Suppr超能文献

基于 DNA 折纸三脚架组装的可重构三维金纳米棒等离子体纳米结构

Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.

机构信息

CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30322, United States.

出版信息

ACS Nano. 2017 Feb 28;11(2):1172-1179. doi: 10.1021/acsnano.6b06861. Epub 2017 Jan 9.

Abstract

Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.

摘要

独特的电磁特性可以从等离子体纳米结构的三维(3D)构型中显现出来。此外,通过物理或化学刺激驱动的动态等离子体纳米结构的重新配置,可以产生定制的等离子体响应。在这项工作中,我们使用自下而上的 DNA 自组装构建了一种具有可控、可逆构象转变的 3D 可重构等离子体纳米结构。三个金纳米棒(AuNRs)被放置在可重构的 DNA 折纸三脚架上。通过 toehold-mediated strand displacement 操作折纸三脚架,可以精确调整纳米棒之间的夹角和距离。构象变化的转导表现为等离子体共振峰的可控移动,这通过暗场显微镜进行了研究,并与电动力学计算吻合良好。这种新的 3D 等离子体纳米结构不仅提供了一种方法来研究规定 3D 构象下 AuNRs 的等离子体共振,还表明 DNA 折纸可以作为构建具有定制光学特性的各种 3D 可重构等离子体纳米结构的通用自组装平台。

相似文献

1
Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.
ACS Nano. 2017 Feb 28;11(2):1172-1179. doi: 10.1021/acsnano.6b06861. Epub 2017 Jan 9.
2
DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
Acc Chem Res. 2017 Dec 19;50(12):2906-2914. doi: 10.1021/acs.accounts.7b00389. Epub 2017 Sep 27.
4
Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.
Nano Lett. 2017 Nov 8;17(11):7125-7130. doi: 10.1021/acs.nanolett.7b03946. Epub 2017 Oct 11.
5
DNA-Origami-Based Assembly of Anisotropic Plasmonic Gold Nanostructures.
Small. 2017 Jun;13(23). doi: 10.1002/smll.201603991. Epub 2017 Apr 27.
6
Customized Self-Assembled Gold Nanoparticle-DNA Origami Composite Templates for Shape-Directed Growth of Plasmonic Structures.
Nano Lett. 2024 Jun 5;24(22):6480-6487. doi: 10.1021/acs.nanolett.4c00504. Epub 2024 May 21.
7
Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.
J Am Chem Soc. 2012 Jan 11;134(1):146-9. doi: 10.1021/ja209861x. Epub 2011 Dec 13.
10
Reconfigurable Plasmonic Diastereomers Assembled by DNA Origami.
ACS Nano. 2019 Dec 24;13(12):13702-13708. doi: 10.1021/acsnano.9b06734. Epub 2019 Sep 26.

引用本文的文献

1
3D Nanofabrication via Directed Material Assembly: Mechanism, Method, and Future.
Adv Mater. 2025 Jan;37(2):e2312915. doi: 10.1002/adma.202312915. Epub 2024 Dec 2.
2
3D DNA origami pincers that multitask on giant unilamellar vesicles.
Sci Adv. 2024 Aug 16;10(33):eadn8903. doi: 10.1126/sciadv.adn8903.
3
Synthetic molecular switches driven by DNA-modifying enzymes.
Nat Commun. 2024 May 6;15(1):3781. doi: 10.1038/s41467-024-47742-2.
4
Mechanics of dynamic and deformable DNA nanostructures.
Chem Sci. 2023 Jul 6;14(30):8018-8046. doi: 10.1039/d3sc01793a. eCollection 2023 Aug 2.
5
DNA-Driven Dynamic Assembly/Disassembly of Inorganic Nanocrystals for Biomedical Imaging.
Chem Biomed Imaging. 2023 May 8;1(4):340-355. doi: 10.1021/cbmi.3c00028. eCollection 2023 Jul 24.
6
Harnessing a paper-folding mechanism for reconfigurable DNA origami.
Nature. 2023 Jul;619(7968):78-86. doi: 10.1038/s41586-023-06181-7. Epub 2023 Jul 5.
7
Recent Advances in DNA Origami-Engineered Nanomaterials and Applications.
Chem Rev. 2023 Apr 12;123(7):3976-4050. doi: 10.1021/acs.chemrev.3c00028. Epub 2023 Mar 29.
8
Reversible changes in the orientation of gold nanorod arrays on polymer brushes.
Nanoscale Adv. 2020 May 22;2(9):3798-3803. doi: 10.1039/d0na00315h. eCollection 2020 Sep 16.
9
Reconfiguration of DNA nanostructures induced by enzymatic ligation treatment.
Nucleic Acids Res. 2022 Aug 12;50(14):8392-8398. doi: 10.1093/nar/gkac606.
10
Controlled synthesis of gold nanorod dimers with end-to-end configurations.
RSC Adv. 2022 May 5;12(21):13464-13471. doi: 10.1039/d2ra01288j. eCollection 2022 Apr 28.

本文引用的文献

1
Optical imaging of individual biomolecules in densely packed clusters.
Nat Nanotechnol. 2016 Sep;11(9):798-807. doi: 10.1038/nnano.2016.95. Epub 2016 Jul 4.
2
Self-Assembly of Chiral Plasmonic Nanostructures.
Adv Mater. 2016 Dec;28(47):10499-10507. doi: 10.1002/adma.201600697. Epub 2016 Jun 21.
3
Designer nanoscale DNA assemblies programmed from the top down.
Science. 2016 Jun 24;352(6293):1534. doi: 10.1126/science.aaf4388. Epub 2016 May 26.
4
Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
J Am Chem Soc. 2016 Jun 22;138(24):7733-40. doi: 10.1021/jacs.6b03966. Epub 2016 Jun 9.
5
Plasmonic Toroidal Metamolecules Assembled by DNA Origami.
J Am Chem Soc. 2016 May 4;138(17):5495-8. doi: 10.1021/jacs.6b00958. Epub 2016 Apr 19.
6
Diamond family of nanoparticle superlattices.
Science. 2016 Feb 5;351(6273):582-6. doi: 10.1126/science.aad2080.
7
Site-Specific Surface Functionalization of Gold Nanorods Using DNA Origami Clamps.
J Am Chem Soc. 2016 Feb 17;138(6):1764-7. doi: 10.1021/jacs.5b11566. Epub 2016 Feb 3.
9
A plasmonic nanorod that walks on DNA origami.
Nat Commun. 2015 Aug 25;6:8102. doi: 10.1038/ncomms9102.
10
DNA rendering of polyhedral meshes at the nanoscale.
Nature. 2015 Jul 23;523(7561):441-4. doi: 10.1038/nature14586.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验