CAS Key Laboratory of Nanosystems and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China.
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30322, United States.
ACS Nano. 2017 Feb 28;11(2):1172-1179. doi: 10.1021/acsnano.6b06861. Epub 2017 Jan 9.
Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.
独特的电磁特性可以从等离子体纳米结构的三维(3D)构型中显现出来。此外,通过物理或化学刺激驱动的动态等离子体纳米结构的重新配置,可以产生定制的等离子体响应。在这项工作中,我们使用自下而上的 DNA 自组装构建了一种具有可控、可逆构象转变的 3D 可重构等离子体纳米结构。三个金纳米棒(AuNRs)被放置在可重构的 DNA 折纸三脚架上。通过 toehold-mediated strand displacement 操作折纸三脚架,可以精确调整纳米棒之间的夹角和距离。构象变化的转导表现为等离子体共振峰的可控移动,这通过暗场显微镜进行了研究,并与电动力学计算吻合良好。这种新的 3D 等离子体纳米结构不仅提供了一种方法来研究规定 3D 构象下 AuNRs 的等离子体共振,还表明 DNA 折纸可以作为构建具有定制光学特性的各种 3D 可重构等离子体纳米结构的通用自组装平台。