Suppr超能文献

WhatEELS。一种基于Python的交互式软件解决方案,用于结合聚类和非线性最小二乘法的电子能量损失近边结构(ELNES)分析。

WhatEELS. A python-based interactive software solution for ELNES analysis combining clustering and NLLS.

作者信息

Blanco-Portals J, Torruella P, Baiutti F, Anelli S, Torrell M, Tarancón A, Peiró F, Estradé S

机构信息

LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.

LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.

出版信息

Ultramicroscopy. 2022 Jan;232:113403. doi: 10.1016/j.ultramic.2021.113403. Epub 2021 Oct 2.

Abstract

The analysis of energy loss near edge structures in EELS is a powerful method for a precise characterization of elemental oxidation states and local atomic coordination with an outstanding lateral resolution, down to the atomic scale. Given the complexity and sizes of the EELS spectrum images datasets acquired by the state-of-the-art instrumentation, methods with low convergence times are usually preferred for spectral unmixing in quantitative analysis, such as multiple linear least squares fittings. Nevertheless, non-linear least squares fitting may be a superior choice for analysis in some cases, as it eliminates the need of calibrated reference spectra and provides information for each of the individual components included in the fitted model. To avoid some of the problems that the non-linear least squares algorithms may suffer dealing with mixed-composition samples and, thus, a model comprised by a large number of individual curves we proposed the combination of clustering analysis for segmentation and non-linear least squares fitting for spectral analysis. Clustering analysis is capable of a fast classification of pixels in smaller subsets divided by their spectral characteristics, and thus increases the control over the model parameters in separated regions of the samples, classified by their specific compositions. Furthermore, along with this manuscript we provide access to a self-contained and expandable modular software solution called WhatEELS. It was specifically designed to facilitate the combined use of clustering and NLLS, and includes a set of tools for white-lines analysis and elemental quantification. We successfully demonstrated its capabilities with a control sample of mesoporous cerium oxide doped with praseodymium and gadolinium, which posed challenging case-study given its spectral characteristics.

摘要

电子能量损失谱(EELS)中近边结构附近的能量损失分析是一种强大的方法,可用于精确表征元素氧化态和局部原子配位情况,具有出色的横向分辨率,可达原子尺度。鉴于通过最先进仪器获取的EELS光谱图像数据集的复杂性和规模,在定量分析的光谱解混中,通常首选收敛时间短的方法,如多元线性最小二乘法拟合。然而,在某些情况下,非线性最小二乘法拟合可能是更好的分析选择,因为它无需校准参考光谱,并能为拟合模型中包含的每个单独成分提供信息。为避免非线性最小二乘算法在处理混合成分样品时可能遇到的一些问题,进而避免处理由大量单独曲线组成的模型,我们提出将聚类分析用于分割和非线性最小二乘法拟合用于光谱分析相结合。聚类分析能够根据光谱特征快速将像素分类到较小的子集中,从而增强对按特定成分分类的样品不同区域中模型参数的控制。此外,随本文提供了一个名为WhatEELS的独立且可扩展的模块化软件解决方案。它专门设计用于促进聚类和非线性最小二乘法的联合使用,并包括一组用于白线分析和元素定量的工具。我们通过掺杂镨和钆的介孔氧化铈对照样品成功展示了其功能,鉴于其光谱特征,该样品构成了具有挑战性的案例研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验