Bollen Pinto Bernardo, Ribas Ripoll Vicent, Subías-Beltrán Paula, Herpain Antoine, Barlassina Cristina, Oliveira Eliandre, Pastorelli Roberta, Braga Daniele, Barcella Matteo, Subirats Laia, Bauzá-Martinez Julia, Odena Antonia, Ferrario Manuela, Baselli Giuseppe, Aletti Federico, Bendjelid Karim
Department of Acute Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland.
Unit of Digital Health, Eurecat, Centre Tecnològic de Catalunya, 08290 Barcelona, Spain.
J Clin Med. 2021 Sep 24;10(19):4354. doi: 10.3390/jcm10194354.
Currently, there is no therapy targeting septic cardiomyopathy (SC), a key contributor to organ dysfunction in sepsis. In this study, we used a machine learning (ML) pipeline to explore transcriptomic, proteomic, and metabolomic data from patients with septic shock, and prospectively collected measurements of high-sensitive cardiac troponin and echocardiography. The purposes of the study were to suggest an exploratory methodology to identify and characterise the multiOMICs profile of (i) myocardial injury in patients with septic shock, and of (ii) cardiac dysfunction in patients with myocardial injury. The study included 27 adult patients admitted for septic shock. Peripheral blood samples for OMICS analysis and measurements of high-sensitive cardiac troponin T (hscTnT) were collected at two time points during the ICU stay. A ML-based study was designed and implemented to untangle the relations among the OMICS domains and the aforesaid biomarkers. The resulting ML pipeline consisted of two main experimental phases: recursive feature selection (FS) assessing the stability of biomarkers, and classification to characterise the multiOMICS profile of the target biomarkers. The application of a ML pipeline to circulate OMICS data in patients with septic shock has the potential to predict the risk of myocardial injury and the risk of cardiac dysfunction.
目前,针对脓毒症心肌病(SC)尚无治疗方法,而脓毒症心肌病是脓毒症导致器官功能障碍的关键因素。在本研究中,我们使用机器学习(ML)流程来探索感染性休克患者的转录组学、蛋白质组学和代谢组学数据,并前瞻性收集高敏心肌肌钙蛋白测量值和超声心动图检查结果。本研究的目的是提出一种探索性方法,以识别和表征(i)感染性休克患者心肌损伤以及(ii)心肌损伤患者心脏功能障碍的多组学特征。该研究纳入了27名因感染性休克入院的成年患者。在重症监护病房(ICU)住院期间的两个时间点采集用于组学分析的外周血样本和高敏心肌肌钙蛋白T(hscTnT)测量值。设计并实施了一项基于机器学习的研究,以理清组学领域与上述生物标志物之间的关系。最终的机器学习流程包括两个主要实验阶段:评估生物标志物稳定性的递归特征选择(FS),以及表征目标生物标志物多组学特征的分类。将机器学习流程应用于感染性休克患者的循环组学数据,有可能预测心肌损伤风险和心脏功能障碍风险。