Suppr超能文献

基于 3D MODT 的语义感知动态 SLAM。

Semantics Aware Dynamic SLAM Based on 3D MODT.

机构信息

Intelligent Robotics Laboratory, Control and Robotics Engineering Department, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.

出版信息

Sensors (Basel). 2021 Sep 23;21(19):6355. doi: 10.3390/s21196355.

Abstract

The idea of SLAM (Simultaneous Localization and Mapping) being a solved problem revolves around the static world assumption, even though autonomous systems are gaining environmental perception capabilities by exploiting the advances in computer vision and data-driven approaches. The computational demands and time complexities remain the main impediment in the effective fusion of the paradigms. In this paper, a framework to solve the dynamic SLAM problem is proposed. The dynamic regions of the scene are handled by making use of Visual-LiDAR based MODT (Multiple Object Detection and Tracking). Furthermore, minimal computational demands and real-time performance are ensured. The framework is tested on the KITTI Datasets and evaluated against the publicly available evaluation tools for a fair comparison with state-of-the-art SLAM algorithms. The results suggest that the proposed dynamic SLAM framework can perform in real-time with budgeted computational resources. In addition, the fused MODT provides rich semantic information that can be readily integrated into SLAM.

摘要

SLAM(同时定位与建图)被认为是一个已经解决的问题,其核心在于静态环境的假设,尽管自主系统通过利用计算机视觉和数据驱动方法的进步,正在获得环境感知能力。计算需求和时间复杂度仍然是有效融合这些范式的主要障碍。在本文中,提出了一种解决动态 SLAM 问题的框架。通过使用基于视觉激光雷达的 MODT(多目标检测和跟踪)来处理场景中的动态区域。此外,还确保了最小的计算需求和实时性能。该框架在 KITTI 数据集上进行了测试,并使用公开的评估工具进行了评估,以便与最先进的 SLAM 算法进行公平比较。结果表明,所提出的动态 SLAM 框架可以在预算计算资源的情况下实时运行。此外,融合的 MODT 提供了丰富的语义信息,可以方便地集成到 SLAM 中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bddb/8512852/efad7cf953e9/sensors-21-06355-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验