Intelligent Robotics Laboratory, Control and Robotics Engineering Department, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
Sensors (Basel). 2021 Sep 23;21(19):6355. doi: 10.3390/s21196355.
The idea of SLAM (Simultaneous Localization and Mapping) being a solved problem revolves around the static world assumption, even though autonomous systems are gaining environmental perception capabilities by exploiting the advances in computer vision and data-driven approaches. The computational demands and time complexities remain the main impediment in the effective fusion of the paradigms. In this paper, a framework to solve the dynamic SLAM problem is proposed. The dynamic regions of the scene are handled by making use of Visual-LiDAR based MODT (Multiple Object Detection and Tracking). Furthermore, minimal computational demands and real-time performance are ensured. The framework is tested on the KITTI Datasets and evaluated against the publicly available evaluation tools for a fair comparison with state-of-the-art SLAM algorithms. The results suggest that the proposed dynamic SLAM framework can perform in real-time with budgeted computational resources. In addition, the fused MODT provides rich semantic information that can be readily integrated into SLAM.
SLAM(同时定位与建图)被认为是一个已经解决的问题,其核心在于静态环境的假设,尽管自主系统通过利用计算机视觉和数据驱动方法的进步,正在获得环境感知能力。计算需求和时间复杂度仍然是有效融合这些范式的主要障碍。在本文中,提出了一种解决动态 SLAM 问题的框架。通过使用基于视觉激光雷达的 MODT(多目标检测和跟踪)来处理场景中的动态区域。此外,还确保了最小的计算需求和实时性能。该框架在 KITTI 数据集上进行了测试,并使用公开的评估工具进行了评估,以便与最先进的 SLAM 算法进行公平比较。结果表明,所提出的动态 SLAM 框架可以在预算计算资源的情况下实时运行。此外,融合的 MODT 提供了丰富的语义信息,可以方便地集成到 SLAM 中。