Intelligent Robotics Laboratory, Department of Control and Robot Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea.
Sensors (Basel). 2019 Mar 26;19(6):1474. doi: 10.3390/s19061474.
Environmental perception plays an essential role in autonomous driving tasks and demands robustness in cluttered dynamic environments such as complex urban scenarios. In this paper, a robust Multiple Object Detection and Tracking (MODT) algorithm for a non-stationary base is presented, using multiple 3D LiDARs for perception. The merged LiDAR data is treated with an efficient MODT framework, considering the limitations of the vehicle-embedded computing environment. The ground classification is obtained through a grid-based method while considering a non-planar ground. Furthermore, unlike prior works, 3D grid-based clustering technique is developed to detect objects under elevated structures. The centroid measurements obtained from the object detection are tracked using Interactive Multiple Model-Unscented Kalman Filter-Joint Probabilistic Data Association Filter (IMM-UKF-JPDAF). IMM captures different motion patterns, UKF handles the nonlinearities of motion models, and JPDAF associates the measurements in the presence of clutter. The proposed algorithm is implemented on two slightly dissimilar platforms, giving real-time performance on embedded computers. The performance evaluation metrics by MOT16 and ground truths provided by KITTI Datasets are used for evaluations and comparison with the state-of-the-art. The experimentation on platforms and comparisons with state-of-the-art techniques suggest that the proposed framework is a feasible solution for MODT tasks.
环境感知在自动驾驶任务中起着至关重要的作用,在复杂的城市场景等杂乱动态环境中需要具备鲁棒性。本文提出了一种基于多个 3D LiDAR 进行感知的非平稳基座的稳健多目标检测和跟踪(MODT)算法。融合的 LiDAR 数据通过一种有效的 MODT 框架进行处理,考虑到车载嵌入式计算环境的限制。地面分类是通过基于网格的方法获得的,同时考虑到非平面地面。此外,与先前的工作不同,本文开发了一种基于 3D 网格的聚类技术,用于检测高架结构下的物体。使用交互式多模型-UKF-JPDAF(IMM-UKF-JPDAF)跟踪从物体检测中获得的质心测量值。IMM 捕获不同的运动模式,UKF 处理运动模型的非线性,JPDAF 在存在杂波的情况下关联测量值。该算法在两个略有不同的平台上实现,在嵌入式计算机上实现实时性能。使用 MOT16 评估指标和 KITTI 数据集提供的地面真值进行评估,并与最先进技术进行比较。在平台上进行的实验和与最先进技术的比较表明,所提出的框架是 MODT 任务的一种可行解决方案。