Suppr超能文献

计算机视觉和机器学习分析商业稻米:消费者感知研究的一种潜在数字化方法。

Computer Vision and Machine Learning Analysis of Commercial Rice Grains: A Potential Digital Approach for Consumer Perception Studies.

机构信息

Digital Agriculture, Food and Wine Group, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.

Faculty of Chemical Engineering Technology, University Malaysia Perlis, Arau 02600, Perlis, Malaysia.

出版信息

Sensors (Basel). 2021 Sep 23;21(19):6354. doi: 10.3390/s21196354.

Abstract

Rice quality assessment is essential for meeting high-quality standards and consumer demands. However, challenges remain in developing cost-effective and rapid techniques to assess commercial rice grain quality traits. This paper presents the application of computer vision (CV) and machine learning (ML) to classify commercial rice samples based on dimensionless morphometric parameters and color parameters extracted using CV algorithms from digital images obtained from a smartphone camera. The artificial neural network (ANN) model was developed using nine morpho-colorimetric parameters to classify rice samples into 15 commercial rice types. Furthermore, the ANN models were deployed and evaluated on a different imaging system to simulate their practical applications under different conditions. Results showed that the best classification accuracy was obtained using the Bayesian Regularization (BR) algorithm of the ANN with ten hidden neurons at 91.6% (MSE = <0.01) and 88.5% (MSE = 0.01) for the training and testing stages, respectively, with an overall accuracy of 90.7% (Model 2). Deployment also showed high accuracy (93.9%) in the classification of the rice samples. The adoption by the industry of rapid, reliable, and accurate methods, such as those presented here, may allow the incorporation of different morpho-colorimetric traits in rice with consumer perception studies.

摘要

大米品质评估对于满足高质量标准和消费者需求至关重要。然而,开发具有成本效益和快速的技术来评估商业稻谷品质特性仍然存在挑战。本文介绍了计算机视觉(CV)和机器学习(ML)在基于从智能手机相机获取的数字图像使用 CV 算法提取的无量纲形态参数和颜色参数对商业大米样本进行分类的应用。使用九个形态-颜色参数开发了人工神经网络(ANN)模型,将大米样本分为 15 种商业大米类型。此外,还在不同的成像系统上部署和评估了 ANN 模型,以模拟它们在不同条件下的实际应用。结果表明,使用 ANN 的贝叶斯正则化(BR)算法,在训练和测试阶段分别获得最佳分类精度,分别为 91.6%(MSE <0.01)和 88.5%(MSE = 0.01),总体精度为 90.7%(模型 2)。部署也显示了对大米样本分类的高准确性(93.9%)。快速、可靠和准确的方法(如本文所述)的采用,可能允许在消费者感知研究中结合大米的不同形态-颜色特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d4/8513047/1fca9caba234/sensors-21-06354-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验