Suppr超能文献

基于心音图的风湿性心脏病筛查。

Rheumatic Heart Disease Screening Based on Phonocardiogram.

机构信息

eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium.

Center of Biomedical Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa P.O. Box 385, Ethiopia.

出版信息

Sensors (Basel). 2021 Sep 30;21(19):6558. doi: 10.3390/s21196558.

Abstract

Rheumatic heart disease (RHD) is one of the most common causes of cardiovascular complications in developing countries. It is a heart valve disease that typically affects children. Impaired heart valves stop functioning properly, resulting in a turbulent blood flow within the heart known as a murmur. This murmur can be detected by cardiac auscultation. However, the specificity and sensitivity of manual auscultation were reported to be low. The other alternative is echocardiography, which is costly and requires a highly qualified physician. Given the disease's current high prevalence rate (the latest reported rate in the study area (Ethiopia) was 5.65%), there is a pressing need for early detection of the disease through mass screening programs. This paper proposes an automated RHD screening approach using machine learning that can be used by non-medically trained persons outside of a clinical setting. Heart sound data was collected from 124 persons with RHD (PwRHD) and 46 healthy controls (HC) in Ethiopia with an additional 81 HC records from an open-access dataset. Thirty-one distinct features were extracted to correctly represent RHD. A support vector machine (SVM) classifier was evaluated using two nested cross-validation approaches to quantitatively assess the generalization of the system to previously unseen subjects. For regular nested 10-fold cross-validation, an f1-score of 96.0 ± 0.9%, recall 95.8 ± 1.5%, precision 96.2 ± 0.6% and a specificity of 96.0 ± 0.6% were achieved. In the imbalanced nested cross-validation at a prevalence rate of 5%, it achieved an f1-score of 72.2 ± 0.8%, recall 92.3 ± 0.4%, precision 59.2 ± 3.6%, and a specificity of 94.8 ± 0.6%. In screening tasks where the prevalence of the disease is small, recall is more important than precision. The findings are encouraging, and the proposed screening tool can be inexpensive, easy to deploy, and has an excellent detection rate. As a result, it has the potential for mass screening and early detection of RHD in developing countries.

摘要

风湿性心脏病(Rheumatic Heart Disease,简称 RHD)是发展中国家最常见的心血管并发症之一。它是一种心脏瓣膜疾病,通常影响儿童。受损的心脏瓣膜无法正常工作,导致心脏内血流出现湍流,形成杂音。这种杂音可以通过心脏听诊来检测。然而,手动听诊的特异性和敏感性据报道较低。另一种选择是超声心动图,但它成本高昂且需要高度合格的医生。鉴于该疾病目前的高患病率(研究地区(埃塞俄比亚)最新报告的患病率为 5.65%),迫切需要通过大规模筛查计划早期发现该疾病。本文提出了一种使用机器学习的自动化 RHD 筛查方法,该方法可以由非医疗专业人员在临床环境之外使用。心脏声音数据是从 124 名患有 RHD(PwRHD)的患者和 46 名健康对照者(HC)在埃塞俄比亚收集的,另有 81 名 HC 记录来自开放获取数据集。提取了 31 个独特的特征来正确表示 RHD。使用两种嵌套交叉验证方法评估支持向量机(Support Vector Machine,简称 SVM)分类器,以定量评估系统对以前未见受试者的泛化能力。对于常规的 10 折嵌套交叉验证,获得了 96.0±0.9%的 f1 分数、95.8±1.5%的召回率、96.2±0.6%的精度和 96.0±0.6%的特异性。在患病率为 5%的不平衡嵌套交叉验证中,它实现了 72.2±0.8%的 f1 分数、92.3±0.4%的召回率、59.2±3.6%的精度和 94.8±0.6%的特异性。在疾病患病率较小的筛查任务中,召回率比精度更重要。这些发现令人鼓舞,所提出的筛查工具可以廉价、易于部署,并且具有出色的检测率。因此,它有可能在发展中国家进行大规模筛查和早期发现 RHD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5275/8512197/81632f0cd423/sensors-21-06558-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验