Department of Electrical Engineering, National Institute of Technology (ITN), Malang 65145, East Java, Indonesia.
Department of Environmental Engineering, National Institute of Technology (ITN), Malang 65145, East Java, Indonesia.
Sensors (Basel). 2021 Oct 7;21(19):6659. doi: 10.3390/s21196659.
A non-destructive method using machine vision is an effective way to monitor plant growth. However, due to the lighting changes and complicated backgrounds in outdoor environments, this becomes a challenging task. In this paper, a low-cost camera system using an NoIR (no infrared filter) camera and a Raspberry Pi module is employed to detect and count the leaves of plants in a greenhouse. An infrared camera captures the images of leaves during the day and nighttime for a precise evaluation. The infrared images allow Otsu thresholding to be used for efficient leaf detection. A combination of numbers of thresholds is introduced to increase the detection performance. Two approaches, consisting of static images and image sequence methods are proposed. A watershed algorithm is then employed to separate the leaves of a plant. The experimental results show that the proposed leaf detection using static images achieves high recall, precision, and F1 score of 0.9310, 0.9053, and 0.9167, respectively, with an execution time of 551 ms. The strategy of using sequences of images increases the performances to 0.9619, 0.9505, and 0.9530, respectively, with an execution time of 516.30 ms. The proposed leaf counting achieves a difference in count (DiC) and absolute DiC (ABS_DiC) of 2.02 and 2.23, respectively, with an execution time of 545.41 ms. Moreover, the proposed method is evaluated using the benchmark image datasets, and shows that the foreground-background dice (FBD), DiC, and ABS_DIC are all within the average values of the existing techniques. The results suggest that the proposed system provides a promising method for real-time implementation.
一种使用机器视觉的非破坏性方法是监测植物生长的有效途径。然而,由于户外环境中的光照变化和复杂背景,这成为了一项具有挑战性的任务。在本文中,我们使用带有 NoIR(无红外滤镜)相机和 Raspberry Pi 模块的低成本相机系统来检测和计数温室中植物的叶子。一台红外相机在白天和夜间捕获叶子的图像,以进行精确评估。红外图像允许使用 Otsu 阈值进行高效的叶子检测。引入了组合多个阈值的方法来提高检测性能。提出了两种方法,包括静态图像和图像序列方法。然后,使用分水岭算法将植物的叶子分开。实验结果表明,使用静态图像的提议叶子检测方法的召回率、精度和 F1 得分分别为 0.9310、0.9053 和 0.9167,执行时间为 551ms。使用图像序列的策略将性能分别提高到 0.9619、0.9505 和 0.9530,执行时间为 516.30ms。所提出的叶子计数方法的差异计数 (DiC) 和绝对差异计数 (ABS_DiC) 分别为 2.02 和 2.23,执行时间为 545.41ms。此外,所提出的方法使用基准图像数据集进行了评估,结果表明前景-背景骰子 (FBD)、DiC 和 ABS_DIC 均在现有技术的平均值范围内。结果表明,所提出的系统为实时实现提供了一种有前途的方法。