Suppr超能文献

表型深度学习计数器:一种用于叶片计数的统一且通用的深度学习架构。

Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting.

机构信息

Institute for Digital Communications, School of Engineering, University of Edinburgh, Thomas Bayes Road, EH9 3FG, Edinburgh, UK.

IMT School for Advanced Studies, Piazza S. Francesco 19, 55100, Lucca, Italy.

出版信息

Plant J. 2018 Nov;96(4):880-890. doi: 10.1111/tpj.14064. Epub 2018 Sep 11.

Abstract

Direct observation of morphological plant traits is tedious and a bottleneck for high-throughput phenotyping. Hence, interest in image-based analysis is increasing, with the requirement for software that can reliably extract plant traits, such as leaf count, preferably across a variety of species and growth conditions. However, current leaf counting methods do not work across species or conditions and therefore may lack broad utility. In this paper, we present Pheno-Deep Counter, a single deep network that can predict leaf count in two-dimensional (2D) plant images of different species with a rosette-shaped appearance. We demonstrate that our architecture can count leaves from multi-modal 2D images, such as visible light, fluorescence and near-infrared. Our network design is flexible, allowing for inputs to be added or removed to accommodate new modalities. Furthermore, our architecture can be used as is without requiring dataset-specific customization of the internal structure of the network, opening its use to new scenarios. Pheno-Deep Counter is able to produce accurate predictions in many plant species and, once trained, can count leaves in a few seconds. Through our universal and open source approach to deep counting we aim to broaden utilization of machine learning-based approaches to leaf counting. Our implementation can be downloaded at https://bitbucket.org/tuttoweb/pheno-deep-counter.

摘要

直接观察植物形态特征既繁琐又成为高通量表型分析的瓶颈。因此,基于图像的分析越来越受到关注,需要能够可靠地提取植物特征(如叶数)的软件,最好能跨多种物种和生长条件使用。然而,当前的叶数计数方法无法跨物种或条件使用,因此可能缺乏广泛的适用性。在本文中,我们提出了 Pheno-Deep Counter,这是一个单一的深度网络,可以预测具有玫瑰形外观的不同物种的二维(2D)植物图像中的叶数。我们证明了我们的架构可以从多模态 2D 图像(如可见光、荧光和近红外光)中计数叶片。我们的网络设计具有灵活性,允许添加或删除输入,以适应新的模态。此外,我们的架构可以直接使用,而无需对网络的内部结构进行特定于数据集的定制,从而为新的场景打开了使用的可能性。Pheno-Deep Counter 能够在许多植物物种中产生准确的预测,并且一旦训练完成,就可以在几秒钟内计算出叶片数。通过我们对深度学习的通用和开源方法,我们旨在拓宽基于机器学习的叶数计数方法的应用。我们的实现可以在 https://bitbucket.org/tuttoweb/pheno-deep-counter 下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72c3/6282617/a270bc1ea30d/TPJ-96-880-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验