Suppr超能文献

基于热成像的车削刀具切削性能的刀具状态监测。

Tool Condition Monitoring of the Cutting Capability of a Turning Tool Based on Thermography.

机构信息

Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia.

出版信息

Sensors (Basel). 2021 Oct 8;21(19):6687. doi: 10.3390/s21196687.

Abstract

In turning, the wear control of a cutting tool benefits product quality enhancement, tool-related costs' optimisation, and assists in avoiding undesired events. In small series and individual production, the machine operator is the one who determines when to change a cutting tool, based upon their experience. Bad decisions can often lead to greater costs, production downtime, and scrap. In this paper, a Tool Condition Monitoring (TCM) system is presented that automatically classifies tool wear of turning tools into four classes (no, low, medium, high wear). A cutting tool was monitored with infrared (IR) camera immediately after the cut and in the following 60 s. The Convolutional Neural Network Inception V3 was used to analyse and classify the thermographic images, which were divided into different groups depending on the time of acquisition. Based on classification result, one gets information about the cutting capability of the tool for further machining. The proposed model, combining Infrared Thermography, Computer Vision, and Deep Learning, proved to be a suitable method with results of more than 96% accuracy. The most appropriate time of image acquisition is 6-12 s after the cut is finished. While existing temperature based TCM systems focus on measuring a cutting tool absolute temperature, the proposed system analyses a temperature distribution (relative temperatures) on the whole image based on image features.

摘要

在车削过程中,刀具的磨损控制有利于提高产品质量、优化与刀具相关的成本,并有助于避免意外事件的发生。在小批量和单件生产中,机器操作员根据经验来决定何时更换刀具。错误的决策往往会导致更高的成本、生产停机时间和报废。本文提出了一种刀具状态监测(TCM)系统,该系统能够将车削刀具的磨损自动分为四级(无磨损、低磨损、中磨损、高磨损)。使用红外(IR)摄像机在切削后立即以及接下来的 60 秒内对刀具进行监测。卷积神经网络 Inception V3 用于分析和分类热成像图像,这些图像根据采集时间被分为不同的组。根据分类结果,可以获得有关刀具进一步加工的切削能力的信息。该模型结合了红外热成像、计算机视觉和深度学习,被证明是一种合适的方法,其准确率超过 96%。最合适的图像采集时间是切削完成后 6-12 秒。虽然现有的基于温度的 TCM 系统侧重于测量刀具的绝对温度,但所提出的系统基于图像特征分析整个图像的温度分布(相对温度)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bb3/8512854/65d12c5cf1ab/sensors-21-06687-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验