Suppr超能文献

基于卷积神经网络的面铣削过程中刀具磨损自动识别

Automatic Identification of Tool Wear Based on Convolutional Neural Network in Face Milling Process.

作者信息

Wu Xuefeng, Liu Yahui, Zhou Xianliang, Mou Aolei

机构信息

Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China.

出版信息

Sensors (Basel). 2019 Sep 4;19(18):3817. doi: 10.3390/s19183817.

Abstract

Monitoring of tool wear in machining process has found its importance to predict tool life, reduce equipment downtime, and tool costs. Traditional visual methods require expert experience and human resources to obtain accurate tool wear information. With the development of charge-coupled device (CCD) image sensor and the deep learning algorithms, it has become possible to use the convolutional neural network (CNN) model to automatically identify the wear types of high-temperature alloy tools in the face milling process. In this paper, the CNN model is developed based on our image dataset. The convolutional automatic encoder (CAE) is used to pre-train the network model, and the model parameters are fine-tuned by back propagation (BP) algorithm combined with stochastic gradient descent (SGD) algorithm. The established ToolWearnet network model has the function of identifying the tool wear types. The experimental results show that the average recognition precision rate of the model can reach 96.20%. At the same time, the automatic detection algorithm of tool wear value is improved by combining the identified tool wear types. In order to verify the feasibility of the method, an experimental system is built on the machine tool. By matching the frame rate of the industrial camera and the machine tool spindle speed, the wear image information of all the inserts can be obtained in the machining gap. The automatic detection method of tool wear value is compared with the result of manual detection by high precision digital optical microscope, the mean absolute percentage error is 4.76%, which effectively verifies the effectiveness and practicality of the method.

摘要

加工过程中的刀具磨损监测对于预测刀具寿命、减少设备停机时间和刀具成本具有重要意义。传统的视觉方法需要专家经验和人力资源来获取准确的刀具磨损信息。随着电荷耦合器件(CCD)图像传感器和深度学习算法的发展,利用卷积神经网络(CNN)模型自动识别面铣削过程中高温合金刀具的磨损类型成为可能。本文基于我们的图像数据集开发了CNN模型。使用卷积自动编码器(CAE)对网络模型进行预训练,并通过反向传播(BP)算法结合随机梯度下降(SGD)算法对模型参数进行微调。所建立的ToolWearnet网络模型具有识别刀具磨损类型的功能。实验结果表明,该模型的平均识别准确率可达96.20%。同时,结合识别出的刀具磨损类型改进了刀具磨损值的自动检测算法。为验证该方法的可行性,在机床上搭建了实验系统。通过匹配工业相机的帧率和机床主轴转速,可在加工间隙中获取所有刀片的磨损图像信息。将刀具磨损值的自动检测方法与高精度数字光学显微镜的人工检测结果进行比较,平均绝对百分比误差为4.76%,有效验证了该方法的有效性和实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验