Vijitha Raagala, Nagaraja Kasula, Hanafiah Marlia M, Rao Kummara Madhusudana, Venkateswarlu Katta, Lakkaboyana Sivarama Krishna, Rao Kummari S V Krishna
Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India.
Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
Polymers (Basel). 2021 Sep 27;13(19):3293. doi: 10.3390/polym13193293.
Polyelectrolyte membranes (PEMs) are a novel type of material that is in high demand in health, energy and environmental sectors. If environmentally benign materials are created with biodegradable ones, PEMs can evolve into practical technology. In this work, we have fabricated environmentally safe and economic PEMs based on sulfonate grafted sodium alginate (SA) and poly(vinyl alcohol) (PVA). In the first step, 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulfonate (SVBS) are grafted on to SA by utilizing the simple free radical polymerization technique. Graft copolymers (SA-g-AMPS and SA-g-SVBS) were characterized by H NMR, FTIR, XRD and DSC. In the second step, sulfonated SA was successfully blended with PVA to fabricate PEMs for the in vitro controlled release of 5-fluorouracil (anti-cancer drug) at pH 1.2 and 7.4 and to remove copper (II) ions from aqueous media. Moreover, phosphomolybdic acids (PMAs) incorporated with composite PEMs were developed to evaluate fuel cell characteristics, i.e., ion exchange capacity, oxidative stability, proton conductivity and methanol permeability. Fabricated PEMs are characterized by the FTIR, ATR-FTIR, XRD, SEM and EDAX. PMA was incorporated. PEMs demonstrated maximum encapsulation efficiency of 5FU, i.e., 78 ± 2.3%, and released the drug maximum in pH 7.4 buffer. The maximum Cu(II) removal was observed at 188.91 and 181.22 mg.g. PMA incorporated with PEMs exhibited significant proton conductivity (59.23 and 45.66 mS/cm) and low methanol permeability (2.19 and 2.04 × 10 cm/s).
聚电解质膜(PEMs)是一种新型材料,在健康、能源和环境领域有很高的需求。如果用可生物降解的材料制造对环境无害的材料,聚电解质膜就能发展成为实用技术。在这项工作中,我们基于磺酸盐接枝海藻酸钠(SA)和聚乙烯醇(PVA)制备了环境安全且经济的聚电解质膜。第一步,利用简单的自由基聚合技术将2-丙烯酰胺基-2-甲基丙烷磺酸(AMPS)和4-乙烯基苯磺酸钠(SVBS)接枝到海藻酸钠上。通过核磁共振氢谱(H NMR)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和差示扫描量热法(DSC)对接枝共聚物(SA-g-AMPS和SA-g-SVBS)进行了表征。第二步,将磺化海藻酸钠与聚乙烯醇成功混合,制备用于在pH值为1.2和7.4时体外控制释放5-氟尿嘧啶(抗癌药物)以及从水性介质中去除铜(II)离子的聚电解质膜。此外,还开发了与复合聚电解质膜结合的磷钼酸(PMAs),以评估燃料电池特性,即离子交换容量、氧化稳定性、质子传导率和甲醇渗透率。通过傅里叶变换红外光谱(FTIR)、衰减全反射傅里叶变换红外光谱(ATR-FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)和能谱分析(EDAX)对制备的聚电解质膜进行了表征。加入了磷钼酸。聚电解质膜显示出5-氟尿嘧啶的最大包封效率,即78±2.3%,并且在pH 7.4缓冲液中药物释放量最大。在188.91和181.22 mg/g时观察到最大的铜(II)去除量。与聚电解质膜结合的磷钼酸表现出显著的质子传导率(59.23和45.66 mS/cm)和低甲醇渗透率(2.19和2.04×10 cm/s)。