Suppr超能文献

用于燃料电池应用的新型交联聚乙烯醇基电解质膜。

Novel cross-linked poly(vinyl alcohol)-based electrolyte membranes for fuel cell applications.

作者信息

Kulasekaran Poonkuzhali, Maria Mahimai Berlina, Deivanayagam Paradesi

机构信息

Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur Tamil Nadu India

出版信息

RSC Adv. 2020 Jul 14;10(44):26521-26527. doi: 10.1039/d0ra04360e. eCollection 2020 Jul 9.

Abstract

Herein, a new series of polymer electrolyte membranes was prepared by chemically cross-linked poly(vinyl alcohol) (PVA) and sulfonated poly(ether sulfone) (SPES). A typical polymerization reaction was conducted using three different monomers bisphenol A, phenolphthalein, and 4,4'-dichlorodiphenyl sulfone. The SPES polymer was obtained by the post-sulfonation technique using chlorosulfonic acid as a sulfonating agent. The resultant SPES polymer at different concentrations was blended with cross-linked poly(vinyl alcohol). Structural analysis of the samples was conducted by FTIR, SEM, and XRD. Among the prepared PEM materials, PVA-SPES-20 blend membranes exhibited higher ion-exchange capacity and % water uptake values than those of the other membranes. In addition, the PVA-SPES-20 membrane exhibits the proton conductivity of 0.0367 S cm at 30 °C, whereas pristine PVA shows the proton conductivity of 0.0259 S cm. The overall experimental results revealed that the PVA-SPES blend membranes are promising candidates for fuel cell applications.

摘要

在此,通过化学交联的聚乙烯醇(PVA)和磺化聚醚砜(SPES)制备了一系列新型聚合物电解质膜。使用三种不同的单体双酚A、酚酞和4,4'-二氯二苯砜进行典型的聚合反应。通过使用氯磺酸作为磺化剂的后磺化技术获得SPES聚合物。将不同浓度的所得SPES聚合物与交联聚乙烯醇共混。通过傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和X射线衍射(XRD)对样品进行结构分析。在所制备的质子交换膜材料中,PVA-SPES-20共混膜表现出比其他膜更高的离子交换容量和吸水率。此外,PVA-SPES-20膜在30℃时的质子传导率为0.0367 S/cm,而原始PVA的质子传导率为0.0259 S/cm。总体实验结果表明,PVA-SPES共混膜是燃料电池应用的有前景的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266f/9055404/32a04cba90cb/d0ra04360e-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验