文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

控释药物传递系统:现状与未来方向。

Controlled Drug Delivery Systems: Current Status and Future Directions.

机构信息

Center for Nanofibers and Nanotechnology, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore.

出版信息

Molecules. 2021 Sep 29;26(19):5905. doi: 10.3390/molecules26195905.


DOI:10.3390/molecules26195905
PMID:34641447
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8512302/
Abstract

The drug delivery system enables the release of the active pharmaceutical ingredient to achieve a desired therapeutic response. Conventional drug delivery systems (tablets, capsules, syrups, ointments, etc.) suffer from poor bioavailability and fluctuations in plasma drug level and are unable to achieve sustained release. Without an efficient delivery mechanism, the whole therapeutic process can be rendered useless. Moreover, the drug has to be delivered at a specified controlled rate and at the target site as precisely as possible to achieve maximum efficacy and safety. Controlled drug delivery systems are developed to combat the problems associated with conventional drug delivery. There has been a tremendous evolution in controlled drug delivery systems from the past two decades ranging from macro scale and nano scale to intelligent targeted delivery. The initial part of this review provides a basic understanding of drug delivery systems with an emphasis on the pharmacokinetics of the drug. It also discusses the conventional drug delivery systems and their limitations. Further, controlled drug delivery systems are discussed in detail with the design considerations, classifications and drawings. In addition, nano-drug delivery, targeted and smart drug delivery using stimuli-responsive and intelligent biomaterials is discussed with recent key findings. The paper concludes with the challenges faced and future directions in controlled drug delivery.

摘要

药物传递系统可使活性药物成分释放,以达到预期的治疗效果。传统的药物传递系统(片剂、胶囊、糖浆、软膏等)存在生物利用度差、血浆药物水平波动以及无法实现持续释放等问题。如果没有有效的传递机制,整个治疗过程可能会变得毫无意义。此外,药物必须以特定的控制速率和尽可能精确地递送到靶部位,以实现最大的疗效和安全性。控制药物传递系统是为了应对与传统药物传递相关的问题而开发的。从过去二十年来看,控制药物传递系统已经发生了巨大的演变,从宏观到纳米再到智能靶向传递。本综述的初始部分提供了对药物传递系统的基本理解,重点介绍了药物的药代动力学。它还讨论了传统的药物传递系统及其局限性。此外,还详细讨论了控制药物传递系统的设计考虑因素、分类和示意图。此外,还讨论了使用刺激响应和智能生物材料的纳米药物传递、靶向和智能药物传递,以及最近的关键发现。本文最后总结了控制药物传递中面临的挑战和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/b856f52ec749/molecules-26-05905-g038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7c3091f62bd3/molecules-26-05905-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/a3a9eeef69f1/molecules-26-05905-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7f1cbd38c53c/molecules-26-05905-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/bf42d17143e8/molecules-26-05905-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/a74b24763ac3/molecules-26-05905-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/ea20efb714f3/molecules-26-05905-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/092739d1cc04/molecules-26-05905-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/1e5a529f2682/molecules-26-05905-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/b8a4fc4467c7/molecules-26-05905-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/d52b7bb7ccc2/molecules-26-05905-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/011a257817ae/molecules-26-05905-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/da32b59ef9ea/molecules-26-05905-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7a3ad0887ca0/molecules-26-05905-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/92222025a301/molecules-26-05905-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/ebbfe67be00e/molecules-26-05905-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7d6a5b1824d9/molecules-26-05905-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/4ad4f12c89cc/molecules-26-05905-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/0246102c4982/molecules-26-05905-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/3f71c7a361f5/molecules-26-05905-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/2ee94e7fa197/molecules-26-05905-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/66f9c107c513/molecules-26-05905-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/49ffb72f85e5/molecules-26-05905-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/d222848f7088/molecules-26-05905-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/32df00439405/molecules-26-05905-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/9c0b7d978e3a/molecules-26-05905-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/254568dd5ccc/molecules-26-05905-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/58387a28ccee/molecules-26-05905-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/2d8d99146854/molecules-26-05905-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/9d600c259df1/molecules-26-05905-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/1432138f0eda/molecules-26-05905-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/d496bc663e76/molecules-26-05905-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7916ad30e955/molecules-26-05905-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/8e6b9ac40a2b/molecules-26-05905-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/204c3e32d7d3/molecules-26-05905-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/9f9a1ae28c00/molecules-26-05905-g036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/b856f52ec749/molecules-26-05905-g038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7c3091f62bd3/molecules-26-05905-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/a3a9eeef69f1/molecules-26-05905-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7f1cbd38c53c/molecules-26-05905-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/bf42d17143e8/molecules-26-05905-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/a74b24763ac3/molecules-26-05905-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/ea20efb714f3/molecules-26-05905-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/092739d1cc04/molecules-26-05905-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/1e5a529f2682/molecules-26-05905-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/b8a4fc4467c7/molecules-26-05905-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/d52b7bb7ccc2/molecules-26-05905-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/011a257817ae/molecules-26-05905-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/da32b59ef9ea/molecules-26-05905-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7a3ad0887ca0/molecules-26-05905-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/92222025a301/molecules-26-05905-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/ebbfe67be00e/molecules-26-05905-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7d6a5b1824d9/molecules-26-05905-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/4ad4f12c89cc/molecules-26-05905-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/0246102c4982/molecules-26-05905-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/3f71c7a361f5/molecules-26-05905-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/2ee94e7fa197/molecules-26-05905-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/66f9c107c513/molecules-26-05905-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/49ffb72f85e5/molecules-26-05905-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/d222848f7088/molecules-26-05905-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/32df00439405/molecules-26-05905-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/9c0b7d978e3a/molecules-26-05905-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/254568dd5ccc/molecules-26-05905-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/58387a28ccee/molecules-26-05905-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/2d8d99146854/molecules-26-05905-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/9d600c259df1/molecules-26-05905-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/1432138f0eda/molecules-26-05905-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/d496bc663e76/molecules-26-05905-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/7916ad30e955/molecules-26-05905-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/8e6b9ac40a2b/molecules-26-05905-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/204c3e32d7d3/molecules-26-05905-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/9f9a1ae28c00/molecules-26-05905-g036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db5/8512302/b856f52ec749/molecules-26-05905-g038.jpg

相似文献

[1]
Controlled Drug Delivery Systems: Current Status and Future Directions.

Molecules. 2021-9-29

[2]
Stimuli-Responsive Boron-Based Materials in Drug Delivery.

Int J Mol Sci. 2023-2-1

[3]
Disease-responsive drug delivery: the next generation of smart delivery devices.

Curr Drug Metab. 2012-1

[4]
Challenges in Biomaterial-Based Drug Delivery Approach for the Treatment of Neurodegenerative Diseases: Opportunities for Extracellular Vesicles.

Int J Mol Sci. 2020-12-25

[5]
pH-responsive drug-delivery systems.

Chem Asian J. 2015-2

[6]
Stimuli-Responsive Capsule Membranes for Controlled Release in Pharmaceutical Applications.

Curr Pharm Des. 2017

[7]
Applications of mesoporous materials as excipients for innovative drug delivery and formulation.

Curr Pharm Des. 2013

[8]
Nanostructured materials for applications in drug delivery and tissue engineering.

J Biomater Sci Polym Ed. 2007

[9]
Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue.

Nanomedicine. 2015-7

[10]
Hydrazone linkages in pH responsive drug delivery systems.

Eur J Pharm Sci. 2017-3-1

引用本文的文献

[1]
Emerging stimuli-responsive hydrogels for enhancing chronic wound healing.

RSC Appl Polym. 2025-8-27

[2]
Innovative strategies for mitochondrial dysfunction in myeloproliferative neoplasms a step toward precision medicine.

Ann Med Surg (Lond). 2025-8-19

[3]
Preparation and evaluation of immediate and modified release tablets contained diphenidol hydrochloride.

Sci Rep. 2025-8-29

[4]
Benzimidazole-Pyrimidine Hybrids: Synthesis and Medicinal Properties.

Pharmaceuticals (Basel). 2025-8-19

[5]
Recent Advances in Donepezil Delivery Systems via the Nose-to-Brain Pathway.

Pharmaceutics. 2025-7-24

[6]
The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets.

Bioengineering (Basel). 2025-8-1

[7]
Adipose tissue-targeted drug delivery for treating obesity: current opportunities and challenges.

Drug Deliv. 2025-12

[8]
Oral thin film containing rice husk liquid smoke effects on the expression of key cytokines and growth factors in a periodontitis model.

J Oral Biol Craniofac Res. 2025

[9]
Microfluidic technologies for wearable and implantable biomedical devices.

Lab Chip. 2025-8-21

[10]
Revamping Parkinson's disease therapy using PLGA-based drug delivery systems.

NPJ Parkinsons Dis. 2025-8-20

本文引用的文献

[1]
A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems.

RSC Adv. 2020-7-17

[2]
A sodium alginate-based sustained-release IPN hydrogel and its applications.

RSC Adv. 2020-10-30

[3]
Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes.

Nanomaterials (Basel). 2021-7-30

[4]
Narrow Therapeutic Index drugs: clinical pharmacology perspective.

J Pharm Pharmacol. 2021-9-7

[5]
Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications.

Molecules. 2021-5-10

[6]
Heparin-Tagged PLA-PEG Copolymer-Encapsulated Biochanin A-Loaded (Mg/Al) LDH Nanoparticles Recommended for Non-Thrombogenic and Anti-Proliferative Stent Coating.

Int J Mol Sci. 2021-5-21

[7]
Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management.

Pharmaceutics. 2021-3-8

[8]
Metallic nanoparticles as drug delivery system for the treatment of cancer.

Expert Opin Drug Deliv. 2021-9

[9]
Carbon Nanotubes: Smart Drug/Gene Delivery Carriers.

Int J Nanomedicine. 2021

[10]
Engineering exosomes for targeted drug delivery.

Theranostics. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索