Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599.
Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599.
J Neurosci. 2021 Nov 10;41(45):9466-9481. doi: 10.1523/JNEUROSCI.0556-21.2021. Epub 2021 Oct 12.
, which encodes the protein tSNARE1, is a high-confidence gene candidate for schizophrenia risk, but nothing is known about its cellular or physiological function. We identified the major gene products of and their cytoplasmic localization and function in endosomal trafficking in cortical neurons. We validated three primary isoforms of expressed in human brain, all of which encode a syntaxin-like Qa SNARE domain. RNA-sequencing data from adult and fetal human brain suggested that the majority of tSNARE1 lacks a transmembrane domain that is thought to be necessary for membrane fusion. Biochemical data demonstrate that tSNARE1 can compete with Stx12 for incorporation into an endosomal SNARE complex, supporting its possible role as an inhibitory SNARE. Live-cell imaging in cortical neurons from mice of both sexes demonstrated that brain tSNARE1 isoforms localized to the endosomal network. The most abundant brain isoform, tSNARE1c, localized most frequently to Rab7 late endosomes, and endogenous tSNARE1 displayed a similar localization in human neural progenitor cells and neuroblastoma cells. In mature rat neurons from both sexes, tSNARE1 localized to the dendritic shaft and dendritic spines, supporting a role for tSNARE1 at the postsynapse. Expression of either tSNARE1b or tSNARE1c, which differ only in their inclusion or exclusion of an Myb-like domain, delayed the trafficking of the dendritic endosomal cargo Nsg1 into late endosomal and lysosomal compartments. These data suggest that tSNARE1 regulates endosomal trafficking in cortical neurons, likely by negatively regulating early endosomal to late endosomal trafficking. Schizophrenia is a severe and polygenic neuropsychiatric disorder. Understanding the functions of high-confidence candidate genes is critical toward understanding how their dysfunction contributes to schizophrenia pathogenesis. is one of the high-confidence candidate genes for schizophrenia risk, yet nothing was known about its cellular or physiological function. Here we describe the major isoforms of and their cytoplasmic localization and function in the endosomal network in cortical neurons. Our results are consistent with the hypothesis that the majority of brain tSNARE1 acts as a negative regulator to endolysosomal trafficking.
该基因编码蛋白 tSNARE1,是精神分裂症风险的一个高可信度基因候选者,但它的细胞或生理功能尚不清楚。我们鉴定了 和它们在皮质神经元中内体运输的细胞质定位和功能的主要基因产物。我们验证了三种在人脑表达的主要 异构体,它们都编码一个类似于 syntaxin 的 Qa SNARE 结构域。来自成人和胎儿人脑的 RNA 测序数据表明,大多数 tSNARE1 缺乏一个被认为对膜融合所必需的跨膜结构域。生化数据表明,tSNARE1 可以与 Stx12 竞争,将其纳入内体 SNARE 复合物,支持其作为抑制性 SNARE 的可能作用。来自雌雄小鼠皮质神经元的活细胞成像表明,脑 tSNARE1 异构体定位于内体网络。最丰富的脑异构体 tSNARE1c 最常定位于 Rab7 晚期内体,而内源性 tSNARE1 在人神经祖细胞和神经母细胞瘤细胞中也有类似的定位。在来自雌雄大鼠的成熟神经元中,tSNARE1 定位于树突干和树突棘,支持 tSNARE1 在突触后的作用。表达 tSNARE1b 或 tSNARE1c,它们仅在包含或排除 Myb 样结构域方面存在差异,会延迟树突内体货物 Nsg1 向晚期内体和溶酶体区室的运输。这些数据表明,tSNARE1 调节皮质神经元中的内体运输,可能通过负调节早期内体到晚期内体的运输。精神分裂症是一种严重的多基因神经精神疾病。了解高可信度候选基因的功能对于理解它们的功能障碍如何导致精神分裂症的发病机制至关重要。 是精神分裂症风险的一个高可信度候选基因,但它的细胞或生理功能尚不清楚。在这里,我们描述了 和它们在皮质神经元中的内体网络中的细胞质定位和功能的主要异构体。我们的结果与以下假设一致,即大多数脑 tSNARE1 作为内溶酶体运输的负调节剂发挥作用。