Suppr超能文献

精神分裂症相关蛋白 tSNARE1 调控皮质神经元内体运输。

Schizophrenia-Linked Protein tSNARE1 Regulates Endosomal Trafficking in Cortical Neurons.

机构信息

Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599.

Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599.

出版信息

J Neurosci. 2021 Nov 10;41(45):9466-9481. doi: 10.1523/JNEUROSCI.0556-21.2021. Epub 2021 Oct 12.

Abstract

, which encodes the protein tSNARE1, is a high-confidence gene candidate for schizophrenia risk, but nothing is known about its cellular or physiological function. We identified the major gene products of and their cytoplasmic localization and function in endosomal trafficking in cortical neurons. We validated three primary isoforms of expressed in human brain, all of which encode a syntaxin-like Qa SNARE domain. RNA-sequencing data from adult and fetal human brain suggested that the majority of tSNARE1 lacks a transmembrane domain that is thought to be necessary for membrane fusion. Biochemical data demonstrate that tSNARE1 can compete with Stx12 for incorporation into an endosomal SNARE complex, supporting its possible role as an inhibitory SNARE. Live-cell imaging in cortical neurons from mice of both sexes demonstrated that brain tSNARE1 isoforms localized to the endosomal network. The most abundant brain isoform, tSNARE1c, localized most frequently to Rab7 late endosomes, and endogenous tSNARE1 displayed a similar localization in human neural progenitor cells and neuroblastoma cells. In mature rat neurons from both sexes, tSNARE1 localized to the dendritic shaft and dendritic spines, supporting a role for tSNARE1 at the postsynapse. Expression of either tSNARE1b or tSNARE1c, which differ only in their inclusion or exclusion of an Myb-like domain, delayed the trafficking of the dendritic endosomal cargo Nsg1 into late endosomal and lysosomal compartments. These data suggest that tSNARE1 regulates endosomal trafficking in cortical neurons, likely by negatively regulating early endosomal to late endosomal trafficking. Schizophrenia is a severe and polygenic neuropsychiatric disorder. Understanding the functions of high-confidence candidate genes is critical toward understanding how their dysfunction contributes to schizophrenia pathogenesis. is one of the high-confidence candidate genes for schizophrenia risk, yet nothing was known about its cellular or physiological function. Here we describe the major isoforms of and their cytoplasmic localization and function in the endosomal network in cortical neurons. Our results are consistent with the hypothesis that the majority of brain tSNARE1 acts as a negative regulator to endolysosomal trafficking.

摘要

该基因编码蛋白 tSNARE1,是精神分裂症风险的一个高可信度基因候选者,但它的细胞或生理功能尚不清楚。我们鉴定了 和它们在皮质神经元中内体运输的细胞质定位和功能的主要基因产物。我们验证了三种在人脑表达的主要 异构体,它们都编码一个类似于 syntaxin 的 Qa SNARE 结构域。来自成人和胎儿人脑的 RNA 测序数据表明,大多数 tSNARE1 缺乏一个被认为对膜融合所必需的跨膜结构域。生化数据表明,tSNARE1 可以与 Stx12 竞争,将其纳入内体 SNARE 复合物,支持其作为抑制性 SNARE 的可能作用。来自雌雄小鼠皮质神经元的活细胞成像表明,脑 tSNARE1 异构体定位于内体网络。最丰富的脑异构体 tSNARE1c 最常定位于 Rab7 晚期内体,而内源性 tSNARE1 在人神经祖细胞和神经母细胞瘤细胞中也有类似的定位。在来自雌雄大鼠的成熟神经元中,tSNARE1 定位于树突干和树突棘,支持 tSNARE1 在突触后的作用。表达 tSNARE1b 或 tSNARE1c,它们仅在包含或排除 Myb 样结构域方面存在差异,会延迟树突内体货物 Nsg1 向晚期内体和溶酶体区室的运输。这些数据表明,tSNARE1 调节皮质神经元中的内体运输,可能通过负调节早期内体到晚期内体的运输。精神分裂症是一种严重的多基因神经精神疾病。了解高可信度候选基因的功能对于理解它们的功能障碍如何导致精神分裂症的发病机制至关重要。 是精神分裂症风险的一个高可信度候选基因,但它的细胞或生理功能尚不清楚。在这里,我们描述了 和它们在皮质神经元中的内体网络中的细胞质定位和功能的主要异构体。我们的结果与以下假设一致,即大多数脑 tSNARE1 作为内溶酶体运输的负调节剂发挥作用。

相似文献

1
Schizophrenia-Linked Protein tSNARE1 Regulates Endosomal Trafficking in Cortical Neurons.
J Neurosci. 2021 Nov 10;41(45):9466-9481. doi: 10.1523/JNEUROSCI.0556-21.2021. Epub 2021 Oct 12.
3
Endosomal SNARE proteins regulate CFTR activity and trafficking in epithelial cells.
Exp Cell Res. 2008 Jul 1;314(11-12):2199-211. doi: 10.1016/j.yexcr.2008.04.012. Epub 2008 May 4.
4
Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking.
Mol Biol Cell. 1999 Nov;10(11):3891-908. doi: 10.1091/mbc.10.11.3891.
6
Hrs regulates early endosome fusion by inhibiting formation of an endosomal SNARE complex.
J Cell Biol. 2003 Jul 7;162(1):125-37. doi: 10.1083/jcb.200302083.
7
The LMTK1-TBC1D9B-Rab11A Cascade Regulates Dendritic Spine Formation via Endosome Trafficking.
J Neurosci. 2019 Nov 27;39(48):9491-9502. doi: 10.1523/JNEUROSCI.3209-18.2019. Epub 2019 Oct 18.
8
A second SNARE role for exocytic SNAP25 in endosome fusion.
Mol Biol Cell. 2006 May;17(5):2113-24. doi: 10.1091/mbc.e06-01-0074. Epub 2006 Feb 15.
9
The related neuronal endosomal proteins NEEP21 (Nsg1) and P19 (Nsg2) have divergent expression profiles in vivo.
J Comp Neurol. 2017 Jun 1;525(8):1861-1878. doi: 10.1002/cne.24168. Epub 2017 Mar 15.
10
Syntaxin 11 binds Vti1b and regulates late endosome to lysosome fusion in macrophages.
Traffic. 2011 Jun;12(6):762-73. doi: 10.1111/j.1600-0854.2011.01189.x. Epub 2011 Apr 8.

引用本文的文献

3
Genetic Differences between Male and Female Pattern Hair Loss in a Korean Population.
Life (Basel). 2024 Jul 26;14(8):939. doi: 10.3390/life14080939.
4
The E3 ubiquitin ligase TRIM9 regulates synaptic function and actin dynamics in response to netrin-1.
Mol Biol Cell. 2024 May 1;35(5):ar67. doi: 10.1091/mbc.E23-12-0476. Epub 2024 Mar 20.
5
A Functional Schizophrenia-associated genetic variant near the and genes.
bioRxiv. 2023 Dec 18:2023.12.18.570831. doi: 10.1101/2023.12.18.570831.
8
Intracellular Trafficking and Distribution of Cd and InP Quantum Dots in HeLa and ML-1 Thyroid Cancer Cells.
Nanomaterials (Basel). 2022 Apr 29;12(9):1517. doi: 10.3390/nano12091517.
9
Endosomal trafficking in schizophrenia.
Curr Opin Neurobiol. 2022 Jun;74:102539. doi: 10.1016/j.conb.2022.102539. Epub 2022 Apr 8.

本文引用的文献

2
Assorted dysfunctions of endosomal alkali cation/proton exchanger variants linked to Christianson syndrome.
J Biol Chem. 2020 May 15;295(20):7075-7095. doi: 10.1074/jbc.RA120.012614. Epub 2020 Apr 10.
4
Synergistic effects of common schizophrenia risk variants.
Nat Genet. 2019 Oct;51(10):1475-1485. doi: 10.1038/s41588-019-0497-5. Epub 2019 Sep 23.
5
Synaptic and Gene Regulatory Mechanisms in Schizophrenia, Autism, and 22q11.2 Copy Number Variant-Mediated Risk for Neuropsychiatric Disorders.
Biol Psychiatry. 2020 Jan 15;87(2):150-163. doi: 10.1016/j.biopsych.2019.06.029. Epub 2019 Jul 11.
6
How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health.
Cell Stress. 2018 Mar 22;2(4):72-81. doi: 10.15698/cst2018.04.130.
7
The three-dimensional landscape of the genome in human brain tissue unveils regulatory mechanisms leading to schizophrenia risk.
Schizophr Res. 2020 Mar;217:17-25. doi: 10.1016/j.schres.2019.03.007. Epub 2019 Mar 18.
8
Comprehensive functional genomic resource and integrative model for the human brain.
Science. 2018 Dec 14;362(6420). doi: 10.1126/science.aat8464.
9
Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder.
Science. 2018 Dec 14;362(6420). doi: 10.1126/science.aat8127.
10
Genetic identification of brain cell types underlying schizophrenia.
Nat Genet. 2018 Jun;50(6):825-833. doi: 10.1038/s41588-018-0129-5. Epub 2018 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验