Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria.
X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria.
J Am Chem Soc. 2021 Oct 27;143(42):17825-17832. doi: 10.1021/jacs.1c09175. Epub 2021 Oct 13.
We report on an additive-free Mn(I)-catalyzed dehydrogenative silylation of terminal alkenes. The most active precatalyst is the bench-stable alkyl bisphosphine Mn(I) complex [Mn(dippe)(CO)(CHCHCH)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate which undergoes rapid Si-H bond cleavage of the silane HSiR forming the active 16e Mn(I) silyl catalyst [Mn(dippe)(CO)(SiR)] together with liberated butanal. A broad variety of aromatic and aliphatic alkenes was efficiently and selectively converted into -vinylsilanes and allylsilanes, respectively, at room temperature. Mechanistic insights are provided based on experimental data and DFT calculations revealing that two parallel reaction pathways are operative: an acceptorless reaction pathway involving dihydrogen release and a pathway requiring an alkene as sacrificial hydrogen acceptor.
我们报告了一种无添加剂的 Mn(I)催化末端烯烃的脱氢硅烷化反应。最活跃的前催化剂是稳定的烷基双膦 Mn(I)配合物[Mn(dippe)(CO)(CHCHCH)]。催化过程由 CO 配体向 Mn-烷基键的迁移插入引发,生成酰基中间体,该中间体迅速发生硅烷 HSiR 的 Si-H 键断裂,形成活性 16e Mn(I)硅基催化剂[Mn(dippe)(CO)(SiR)],同时释放出丁醛。在室温下,各种芳香族和脂肪族烯烃分别高效且选择性地转化为 -乙烯基硅烷和烯丙基硅烷。基于实验数据和 DFT 计算提供的机理见解表明,有两种平行的反应途径在起作用:一种是不需要接受体的反应途径,涉及氢气的释放,另一种是需要烯烃作为牺牲氢接受体的途径。