Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.
Anal Chem. 2021 Oct 26;93(42):14121-14129. doi: 10.1021/acs.analchem.1c02471. Epub 2021 Oct 13.
Many aspects of protein function rely on conformational fluctuations. Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) provides a window into these dynamics. Despite the widespread use of HDX-MS, it remains unclear whether this technique provides a truly comprehensive view of protein dynamics. HDX is mediated by H-bond-opening/closing events, implying that HDX methods provide an H-bond-centric view. This raises the question if there could be fluctuations that leave the H-bond network unaffected, thereby rendering them undetectable by HDX-MS. We explore this issue in experiments on cytochrome (cyt ). Compared to the Fe(II) protein, Fe(III) cyt shows enhanced deuteration on both the distal and proximal sides of the heme. Previous studies have attributed the enhanced dynamics of Fe(III) cyt to the facile and reversible rupture of the distal M80-Fe(III) bond. Using molecular dynamics (MD) simulations, we conducted a detailed analysis of various cyt conformers. Our MD data confirm that rupture of the M80-Fe(III) contact triggers major reorientation of the distal Ω loop. Surprisingly, this event takes place with only miniscule H-bonding alterations. In other words, the distal loop dynamics are almost "HDX-silent". Moreover, distal loop movements cannot account for enhanced dynamics on the opposite (proximal) side of the heme. Instead, enhanced deuteration of Fe(III) cyt is attributed to sparsely populated conformers where both the distal (M80) and proximal (H18) coordination bonds have been ruptured, along with opening of numerous H-bonds on both sides of the heme. We conclude that there can be major structural fluctuations that are only weakly coupled to changes in H-bonding, making them virtually impossible to track by HDX-MS. In such cases, HDX-MS may provide an incomplete view of protein dynamics.
蛋白质的许多功能都依赖于构象波动。氢/氘交换 (HDX) 质谱 (MS) 为这些动态提供了一个窗口。尽管 HDX-MS 得到了广泛应用,但仍不清楚该技术是否提供了对蛋白质动态的真正全面的了解。HDX 是由氢键的打开/关闭事件介导的,这意味着 HDX 方法提供了一个氢键为中心的观点。这就提出了一个问题,即是否可能存在波动,而这些波动不会影响氢键网络,从而使它们无法通过 HDX-MS 检测到。我们在细胞色素 (cyt ) 的实验中探讨了这个问题。与 Fe(II) 蛋白相比,Fe(III) cyt 在血红素的远端和近端都表现出增强的氘化。以前的研究将 Fe(III) cyt 的增强动力学归因于远端 M80-Fe(III)键的易断裂和可逆断裂。使用分子动力学 (MD) 模拟,我们对各种 cyt 构象进行了详细分析。我们的 MD 数据证实,M80-Fe(III) 接触的断裂会引发远端 Ω 环的主要重定向。令人惊讶的是,这一事件仅伴随着极小的氢键变化。换句话说,远端环的动力学几乎是“HDX 静默”的。此外,远端环的运动不能解释血红素相反(近端)侧的增强动力学。相反,Fe(III) cyt 的增强氘化归因于稀疏分布的构象,其中远端 (M80) 和近端 (H18) 配位键都已断裂,同时血红素两侧的许多氢键也已打开。我们的结论是,可能存在与氢键变化弱耦合的主要结构波动,这使得它们几乎不可能通过 HDX-MS 进行跟踪。在这种情况下,HDX-MS 可能提供了对蛋白质动态的不完整的了解。