Suppr超能文献

QM/MM 建模研究 A 类β-内酰胺酶揭示了氨苄西林和头孢氨苄的不同酰化途径。

QM/MM modeling of class A β-lactamases reveals distinct acylation pathways for ampicillin and cefalexin.

机构信息

Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA.

The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

Org Biomol Chem. 2021 Nov 3;19(42):9182-9189. doi: 10.1039/d1ob01593a.

Abstract

Efficient mechanism-based design of antibiotics that are not susceptible to β-lactamases is hindered by the lack of comprehensive knowledge on the energetic landscapes for the hydrolysis of various β-lactams. Herein, we adopted efficient quantum mechanics/molecular mechanics simulations to explore the acylation reaction catalyzed by CTX-M-44 (Toho-1) β-lactamase. We show that the catalytic pathways for β-lactam hydrolysis are correlated to substrate scaffolds: using Glu166 as the only general base for acylation is viable for ampicillin but prohibitive for cefalexin. The present computational workflow provides quantitative insights to facilitate the optimization of future β-lactam antibiotics.

摘要

高效的、基于机制的抗生素设计不会受到β-内酰胺酶影响,但由于缺乏对各种β-内酰胺水解的能量景观的全面了解,这一目标受到了阻碍。在此,我们采用高效的量子力学/分子力学模拟来探索 CTX-M-44(Toho-1)β-内酰胺酶催化的酰化反应。我们表明,β-内酰胺水解的催化途径与底物支架相关:使用 Glu166 作为唯一的酰化通用碱对于氨苄西林是可行的,但对于头孢氨苄则是不可行的。本计算工作流程提供了定量的见解,有助于优化未来的β-内酰胺抗生素。

相似文献

1
QM/MM modeling of class A β-lactamases reveals distinct acylation pathways for ampicillin and cefalexin.
Org Biomol Chem. 2021 Nov 3;19(42):9182-9189. doi: 10.1039/d1ob01593a.
7
KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate.
J Biol Chem. 2021 Jan-Jun;296:100155. doi: 10.1074/jbc.RA120.015050. Epub 2020 Dec 10.
10
Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A beta-lactamase.
Org Biomol Chem. 2006 Jan 21;4(2):206-10. doi: 10.1039/b512969a. Epub 2005 Dec 9.

引用本文的文献

1
Trends in guided engineering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET.
Comput Struct Biotechnol J. 2023 Jun 5;21:3513-3521. doi: 10.1016/j.csbj.2023.06.004. eCollection 2023.
3
Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum Energy Pathways.
ACS Phys Chem Au. 2022 Jul 27;2(4):316-330. doi: 10.1021/acsphyschemau.2c00005. Epub 2022 May 18.

本文引用的文献

3
Elucidating the Molecular Basis of Avibactam-Mediated Inhibition of Class A β-Lactamases.
Chemistry. 2020 Aug 3;26(43):9639-9651. doi: 10.1002/chem.202001261. Epub 2020 Jul 9.
4
Enzyme intermediates captured "on the fly" by mix-and-inject serial crystallography.
BMC Biol. 2018 May 31;16(1):59. doi: 10.1186/s12915-018-0524-5.
6
The structure of Toho1 β-lactamase in complex with penicillin reveals the role of Tyr105 in substrate recognition.
FEBS Open Bio. 2016 Nov 7;6(12):1170-1177. doi: 10.1002/2211-5463.12132. eCollection 2016 Dec.
8
Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials.
J Chem Theory Comput. 2009 Aug 11;5(8):2050-61. doi: 10.1021/ct9001398.
10
Parametrization and Benchmark of DFTB3 for Organic Molecules.
J Chem Theory Comput. 2013 Jan 8;9(1):338-54. doi: 10.1021/ct300849w. Epub 2012 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验