Suppr超能文献

研究 C 类β-内酰胺酶的酰化机制:pKa 计算、分子动力学模拟和量子力学计算。

Investigation of the acylation mechanism of class C beta-lactamase: pKa calculation, molecular dynamics simulation and quantum mechanical calculation.

机构信息

Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.

出版信息

J Mol Model. 2012 Feb;18(2):481-92. doi: 10.1007/s00894-011-1087-3. Epub 2011 May 4.

Abstract

β-Lactamases are bacterial enzymes that act as a bacterial defense system against β-lactam antibiotics. β-Lactamase cleaves the β-lactam ring of the antibiotic by a two step mechanism involving acylation and deacylation steps. Although class C β-lactamases have been investigated extensively, the details of their mechanism of action are not well understood at the molecular level. In this study, we investigated the mechanism of the acylation step of class C β-lactamase using pKa calculations, molecular dynamics (MD) simulations and quantum mechanical (QM) calculations. Serine64 (Ser64) is an active site residue that attacks the β-lactam ring. In this study, we considered three possible scenarios for activation of the nucleophile Ser64, where the activation base is (1) Tyrosine150 (Tyr150), (2) Lysine67 (Lys67), or (3) substrate. From the pKa calculation, we found that Tyr150 and Lys67 are likely to remain in their protonated states in the pre-covalent complex between the enzyme and substrate, although their role as activator would require them to be in the deprotonated state. It was found that the carboxylate group of the substrate remained close to Ser64 for most of the simulation. The energy barrier for hydrogen abstraction from Ser64 by the substrate was calculated quantum mechanically using a large truncated model of the enzyme active site and found to be close to the experimental energy barrier, which suggests that the substrate can initiate the acylation mechanism in class C β-lactamase.

摘要

β-内酰胺酶是细菌防御系统对抗β-内酰胺抗生素的酶。β-内酰胺酶通过两步机制,即酰化和脱酰化步骤,作用于抗生素的β-内酰胺环。虽然已经广泛研究了 C 类β-内酰胺酶,但在分子水平上其作用机制的细节仍不清楚。在这项研究中,我们使用 pKa 计算、分子动力学(MD)模拟和量子力学(QM)计算研究了 C 类β-内酰胺酶酰化步骤的机制。丝氨酸 64(Ser64)是攻击β-内酰胺环的活性部位残基。在这项研究中,我们考虑了三种可能的激活亲核试剂 Ser64 的情况,其中激活碱是(1)酪氨酸 150(Tyr150),(2)赖氨酸 67(Lys67),或(3)底物。从 pKa 计算中,我们发现 Tyr150 和 Lys67 在酶与底物的预共价复合物中可能保持质子化状态,尽管它们作为激活剂的作用需要它们处于去质子化状态。发现底物的羧基基团在模拟过程中的大部分时间都靠近 Ser64。使用酶活性部位的大型截断模型,通过 QM 计算从 Ser64 上的底物中进行氢提取的能量障碍接近实验能量障碍,这表明底物可以在 C 类β-内酰胺酶中启动酰化机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验