Hermann Johannes C, Ridder Lars, Mulholland Adrian J, Höltje Hans-Dieter
Institut für Pharmazeutische Chemie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
J Am Chem Soc. 2003 Aug 13;125(32):9590-1. doi: 10.1021/ja034434g.
Bacterial class A beta-lactamases are responsible for the most known resistance against beta-lactam antibiotics. With the continuing rise in antibiotic resistance, improved knowledge of the mechanisms of action of these enzymes is needed in the development of effective therapeutic agents and strategies. The mechanism of the deacylation step in class A beta-lactamases is well accepted. In contrast, the mechanism of the acylation step has been uncertain, with several conflicting proposals put forward. We have modeled the acylation step in a class A beta-lactamase, using a combined quantum mechanics/molecular mechanics approach. The results provide an atomic level description of the reaction and show that Glu166 acts as the general base in the reaction, deprotonating Ser70 via an intervening water molecule. Ser70 acts as the nucleophile for attack on the lactam ring in a concerted reaction. The results do not rule out the importance of Lys73 in catalysis, in agreement with experimental data.
A类β-内酰胺酶是导致对β-内酰胺抗生素最广为人知的耐药性的原因。随着抗生素耐药性的持续上升,在开发有效的治疗药物和策略时,需要更深入了解这些酶的作用机制。A类β-内酰胺酶中脱酰基步骤的机制已得到广泛认可。相比之下,酰化步骤的机制一直不确定,已经提出了几种相互矛盾的观点。我们使用量子力学/分子力学相结合的方法,对A类β-内酰胺酶中的酰化步骤进行了建模。结果提供了该反应的原子水平描述,并表明Glu166在反应中作为通用碱,通过一个中间水分子使Ser70去质子化。Ser70作为亲核试剂在协同反应中攻击内酰胺环。结果并不排除Lys73在催化中的重要性,这与实验数据一致。