Suppr超能文献

使用 CUT&RUN 和 CUT&Tag 技术在斑马鱼原肠胚形成过程中鉴定染色质状态。

Identification of chromatin states during zebrafish gastrulation using CUT&RUN and CUT&Tag.

机构信息

Department of Genetics, University of Georgia, Athens, Georgia, USA.

Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.

出版信息

Dev Dyn. 2022 Apr;251(4):729-742. doi: 10.1002/dvdy.430. Epub 2021 Oct 23.

Abstract

BACKGROUND

Cell fate decisions are governed by interactions between sequence-specific transcription factors and a dynamic chromatin landscape. Zebrafish offer a powerful system for probing the mechanisms that drive these cell fate choices, especially in the context of early embryogenesis. However, technical challenges associated with conventional methods for chromatin profiling have slowed progress toward understanding the exact relationships between chromatin changes, transcription factor binding, and cellular differentiation during zebrafish embryogenesis.

RESULTS

To overcome these challenges, we adapted the chromatin profiling methods Cleavage Under Targets and Release Using Nuclease (CUT&RUN) and CUT&Tag for use in zebrafish and applied these methods to generate high-resolution enrichment maps for H3K4me3, H3K27me3, H3K9me3, RNA polymerase II, and the histone variant H2A.Z using tissue isolated from whole, mid-gastrula stage embryos. Using this data, we identify a subset of genes that may be bivalently regulated during both zebrafish and mouse gastrulation, provide evidence for an evolving H2A.Z landscape during embryo development, and demonstrate the effectiveness of CUT&RUN for detecting H3K9me3 enrichment at repetitive sequences.

CONCLUSIONS

Our results demonstrate the power of combining CUT&RUN and CUT&Tag methods with the strengths of the zebrafish system to define emerging chromatin landscapes in the context of vertebrate embryogenesis.

摘要

背景

细胞命运的决定受序列特异性转录因子与动态染色质景观之间的相互作用所调控。斑马鱼为探究驱动这些细胞命运选择的机制提供了一个强有力的系统,尤其是在早期胚胎发生的背景下。然而,与常规染色质分析方法相关的技术挑战,已经减缓了我们对在斑马鱼胚胎发生过程中染色质变化、转录因子结合和细胞分化之间的确切关系的理解。

结果

为了克服这些挑战,我们对靶向切割和释放(CUT&RUN)和 CUT&Tag 染色质分析方法进行了改编,使其可应用于斑马鱼,并将这些方法应用于从整个中胚层期胚胎分离的组织中,以生成 H3K4me3、H3K27me3、H3K9me3、RNA 聚合酶 II 和组蛋白变体 H2A.Z 的高分辨率富集图谱。使用这些数据,我们确定了一小部分基因,这些基因可能在斑马鱼和小鼠原肠胚形成过程中都处于双重调控状态,为胚胎发育过程中 H2A.Z 景观的演变提供了证据,并证明了 CUT&RUN 检测 H3K9me3 在重复序列上富集的有效性。

结论

我们的结果表明,将 CUT&RUN 和 CUT&Tag 方法与斑马鱼系统的优势相结合,在脊椎动物胚胎发生的背景下定义新兴染色质景观,具有强大的功能。

相似文献

1
Identification of chromatin states during zebrafish gastrulation using CUT&RUN and CUT&Tag.
Dev Dyn. 2022 Apr;251(4):729-742. doi: 10.1002/dvdy.430. Epub 2021 Oct 23.
2
A unique chromatin signature uncovers early developmental enhancers in humans.
Nature. 2011 Feb 10;470(7333):279-83. doi: 10.1038/nature09692. Epub 2010 Dec 15.
3
Anp32e protects against accumulation of H2A.Z at Sox motif containing promoters during zebrafish gastrulation.
Dev Biol. 2024 Mar;507:34-43. doi: 10.1016/j.ydbio.2023.12.010. Epub 2023 Dec 28.
4
The emerging H3K9me3 chromatin landscape during zebrafish embryogenesis.
Genetics. 2024 Oct 7;228(2). doi: 10.1093/genetics/iyae138.
7
Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis.
Genome Res. 2012 Oct;22(10):2043-53. doi: 10.1101/gr.134833.111. Epub 2012 May 16.
8
Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm.
Genome Res. 2011 Apr;21(4):578-89. doi: 10.1101/gr.113167.110. Epub 2011 Mar 7.
9
Single-nucleus chromatin landscapes during zebrafish early embryogenesis.
Sci Data. 2023 Jul 19;10(1):464. doi: 10.1038/s41597-023-02373-y.
10
CUT&Tag applied to zebrafish adult tail fins reveals a return of embryonic H3K4me3 patterns during regeneration.
Epigenetics Chromatin. 2024 Jul 20;17(1):22. doi: 10.1186/s13072-024-00547-5.

引用本文的文献

1
H3K4me2 distinguishes a distinct class of enhancers during the maternal-to-zygotic transition.
PLoS Biol. 2025 Jul 10;23(7):e3003239. doi: 10.1371/journal.pbio.3003239. eCollection 2025 Jul.
2
Canonical and Variant Nucleosome Reprogramming from Sperm to Blastula.
Methods Mol Biol. 2025;2923:17-32. doi: 10.1007/978-1-0716-4522-2_2.
3
From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.
Mol Cancer. 2025 Mar 3;24(1):63. doi: 10.1186/s12943-025-02240-x.
4
H3K4me2 distinguishes a distinct class of enhancers during the maternal-to-zygotic transition.
bioRxiv. 2024 Aug 26:2024.08.26.609713. doi: 10.1101/2024.08.26.609713.
5
The emerging H3K9me3 chromatin landscape during zebrafish embryogenesis.
Genetics. 2024 Oct 7;228(2). doi: 10.1093/genetics/iyae138.
7
CUT&Tag applied to zebrafish adult tail fins reveals a return of embryonic H3K4me3 patterns during regeneration.
Epigenetics Chromatin. 2024 Jul 20;17(1):22. doi: 10.1186/s13072-024-00547-5.
9
The emerging H3K9me3 chromatin landscape during zebrafish embryogenesis.
bioRxiv. 2024 May 9:2024.03.05.582530. doi: 10.1101/2024.03.05.582530.
10
Anp32e protects against accumulation of H2A.Z at Sox motif containing promoters during zebrafish gastrulation.
Dev Biol. 2024 Mar;507:34-43. doi: 10.1016/j.ydbio.2023.12.010. Epub 2023 Dec 28.

本文引用的文献

2
A unified atlas of CD8 T cell dysfunctional states in cancer and infection.
Mol Cell. 2021 Jun 3;81(11):2477-2493.e10. doi: 10.1016/j.molcel.2021.03.045. Epub 2021 Apr 22.
3
Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression.
Nat Biotechnol. 2021 Jul;39(7):819-824. doi: 10.1038/s41587-021-00865-z. Epub 2021 Apr 12.
4
Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues.
Nat Biotechnol. 2021 Jul;39(7):825-835. doi: 10.1038/s41587-021-00869-9. Epub 2021 Apr 12.
5
Sox2 controls neural stem cell self-renewal through a Fos-centered gene regulatory network.
Stem Cells. 2021 Aug;39(8):1107-1119. doi: 10.1002/stem.3373. Epub 2021 Mar 29.
7
Genomic profiling of native R loops with a DNA-RNA hybrid recognition sensor.
Sci Adv. 2021 Feb 17;7(8). doi: 10.1126/sciadv.abe3516. Print 2021 Feb.
8
Twelve years of SAMtools and BCFtools.
Gigascience. 2021 Feb 16;10(2). doi: 10.1093/gigascience/giab008.
9
A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation.
Blood Adv. 2021 Feb 9;5(3):796-811. doi: 10.1182/bloodadvances.2020003096.
10
Zinc Finger Protein SALL4 Functions through an AT-Rich Motif to Regulate Gene Expression.
Cell Rep. 2021 Jan 5;34(1):108574. doi: 10.1016/j.celrep.2020.108574.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验