Department of Biostatistics, Gillings School of Global Public Health, CB#7420, Duke University, Chapel Hill, North Carolina, USA.
Merck Research Lab, Merck & Co, North Wales, Pennsylvania, USA.
Stat Med. 2021 Dec 30;40(30):6855-6872. doi: 10.1002/sim.9214. Epub 2021 Oct 14.
Alzheimer's disease (AD) is a severe neurodegenerative disorder impairing multiple domains, for example, cognition and behavior. Assessing the risk of AD progression and initiating timely interventions at early stages are critical to improve the quality of life for AD patients. Due to the heterogeneous nature and complex mechanisms of AD, one single longitudinal outcome is insufficient to assess AD severity and disease progression. Therefore, AD studies collect multiple longitudinal outcomes, including cognitive and behavioral measurements, as well as structural brain images such as magnetic resonance imaging (MRI). How to utilize the multivariate longitudinal outcomes and MRI data to make efficient statistical inference and prediction is an open question. In this article, we propose a multivariate joint model with functional data (MJM-FD) framework that relates multiple correlated longitudinal outcomes to a survival outcome, and use the scalar-on-function regression method to include voxel-based whole-brain MRI data as functional predictors in both longitudinal and survival models. We adopt a Bayesian paradigm to make statistical inference and develop a dynamic prediction framework to predict an individual's future longitudinal outcomes and risk of a survival event. We validate the MJM-FD framework through extensive simulation studies and apply it to the motivating Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
阿尔茨海默病(AD)是一种严重的神经退行性疾病,会损害多个领域,例如认知和行为。评估 AD 进展的风险并在早期阶段及时进行干预对于提高 AD 患者的生活质量至关重要。由于 AD 的异质性和复杂机制,单一的纵向结局不足以评估 AD 的严重程度和疾病进展。因此,AD 研究收集了多个纵向结局,包括认知和行为测量以及结构脑图像,如磁共振成像(MRI)。如何利用多元纵向结局和 MRI 数据进行有效的统计推断和预测是一个悬而未决的问题。在本文中,我们提出了一种具有功能数据(MJM-FD)框架的多元联合模型,该模型将多个相关的纵向结局与生存结局联系起来,并使用标量函数回归方法将基于体素的全脑 MRI 数据作为功能预测因子纳入纵向和生存模型中。我们采用贝叶斯范式进行统计推断,并开发了一个动态预测框架,以预测个体的未来纵向结局和生存事件的风险。我们通过广泛的模拟研究验证了 MJM-FD 框架,并将其应用于激励性的阿尔茨海默病神经影像学倡议(ADNI)研究。