Suppr超能文献

贝叶斯推断和功能数据的多元联合模型的动态预测:在阿尔茨海默病中的应用。

Bayesian inference and dynamic prediction of multivariate joint model with functional data: An application to Alzheimer's disease.

机构信息

Department of Biostatistics, Gillings School of Global Public Health, CB#7420, Duke University, Chapel Hill, North Carolina, USA.

Merck Research Lab, Merck & Co, North Wales, Pennsylvania, USA.

出版信息

Stat Med. 2021 Dec 30;40(30):6855-6872. doi: 10.1002/sim.9214. Epub 2021 Oct 14.

Abstract

Alzheimer's disease (AD) is a severe neurodegenerative disorder impairing multiple domains, for example, cognition and behavior. Assessing the risk of AD progression and initiating timely interventions at early stages are critical to improve the quality of life for AD patients. Due to the heterogeneous nature and complex mechanisms of AD, one single longitudinal outcome is insufficient to assess AD severity and disease progression. Therefore, AD studies collect multiple longitudinal outcomes, including cognitive and behavioral measurements, as well as structural brain images such as magnetic resonance imaging (MRI). How to utilize the multivariate longitudinal outcomes and MRI data to make efficient statistical inference and prediction is an open question. In this article, we propose a multivariate joint model with functional data (MJM-FD) framework that relates multiple correlated longitudinal outcomes to a survival outcome, and use the scalar-on-function regression method to include voxel-based whole-brain MRI data as functional predictors in both longitudinal and survival models. We adopt a Bayesian paradigm to make statistical inference and develop a dynamic prediction framework to predict an individual's future longitudinal outcomes and risk of a survival event. We validate the MJM-FD framework through extensive simulation studies and apply it to the motivating Alzheimer's Disease Neuroimaging Initiative (ADNI) study.

摘要

阿尔茨海默病(AD)是一种严重的神经退行性疾病,会损害多个领域,例如认知和行为。评估 AD 进展的风险并在早期阶段及时进行干预对于提高 AD 患者的生活质量至关重要。由于 AD 的异质性和复杂机制,单一的纵向结局不足以评估 AD 的严重程度和疾病进展。因此,AD 研究收集了多个纵向结局,包括认知和行为测量以及结构脑图像,如磁共振成像(MRI)。如何利用多元纵向结局和 MRI 数据进行有效的统计推断和预测是一个悬而未决的问题。在本文中,我们提出了一种具有功能数据(MJM-FD)框架的多元联合模型,该模型将多个相关的纵向结局与生存结局联系起来,并使用标量函数回归方法将基于体素的全脑 MRI 数据作为功能预测因子纳入纵向和生存模型中。我们采用贝叶斯范式进行统计推断,并开发了一个动态预测框架,以预测个体的未来纵向结局和生存事件的风险。我们通过广泛的模拟研究验证了 MJM-FD 框架,并将其应用于激励性的阿尔茨海默病神经影像学倡议(ADNI)研究。

相似文献

2
Multivariate functional mixed model with MRI data: An application to Alzheimer's disease.
Stat Med. 2023 May 10;42(10):1492-1511. doi: 10.1002/sim.9683. Epub 2023 Feb 20.
3
BAYESIAN INFERENCE AND DYNAMIC PREDICTION FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA.
Ann Appl Stat. 2023 Sep;17(3):2574-2595. doi: 10.1214/23-aoas1733. Epub 2023 Sep 7.
4
Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer's disease.
Stat Methods Med Res. 2019 Feb;28(2):327-342. doi: 10.1177/0962280217722177. Epub 2017 Jul 28.
5
Bayesian Functional Joint Models for Multivariate Longitudinal and Time-to-Event Data.
Comput Stat Data Anal. 2019 Jan;129:14-29. doi: 10.1016/j.csda.2018.07.015. Epub 2018 Aug 16.
6
Estimating anatomical trajectories with Bayesian mixed-effects modeling.
Neuroimage. 2015 Nov 1;121:51-68. doi: 10.1016/j.neuroimage.2015.06.094. Epub 2015 Jul 17.
7
8
Predicting individual brain functional connectivity using a Bayesian hierarchical model.
Neuroimage. 2017 Feb 15;147:772-787. doi: 10.1016/j.neuroimage.2016.11.048. Epub 2016 Dec 1.
10
A joint model for multivariate longitudinal and survival data to discover the conversion to Alzheimer's disease.
Stat Med. 2022 Jan 30;41(2):356-373. doi: 10.1002/sim.9241. Epub 2021 Nov 2.

引用本文的文献

2
DYNAMIC PREDICTION WITH MULTIVARIATE LONGITUDINAL OUTCOMES AND LONGITUDINAL MAGNETIC RESONANCE IMAGING DATA.
Ann Appl Stat. 2025 Mar;19(1):505-528. doi: 10.1214/24-aoas1970. Epub 2025 Mar 17.
4
Multivariate functional mixed model with MRI data: An application to Alzheimer's disease.
Stat Med. 2023 May 10;42(10):1492-1511. doi: 10.1002/sim.9683. Epub 2023 Feb 20.

本文引用的文献

1
Associations between cognitive and brain volume changes in cognitively normal older adults.
Neuroimage. 2020 Dec;223:117289. doi: 10.1016/j.neuroimage.2020.117289. Epub 2020 Aug 21.
2
Associations Between Longitudinal Trajectories of Cognitive and Social Activities and Brain Health in Old Age.
JAMA Netw Open. 2020 Aug 3;3(8):e2013793. doi: 10.1001/jamanetworkopen.2020.13793.
3
Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change.
Rev Neurosci. 2019 Dec 18;31(1):1-57. doi: 10.1515/revneuro-2018-0096.
4
Alzheimer's disease polygenic risk score as a predictor of conversion from mild-cognitive impairment.
Transl Psychiatry. 2019 May 24;9(1):154. doi: 10.1038/s41398-019-0485-7.
5
Dynamic prediction: A challenge for biostatisticians, but greatly needed by patients, physicians and the public.
Biom J. 2020 May;62(3):822-835. doi: 10.1002/bimj.201800248. Epub 2019 Mar 25.
6
Identifying brain changes related to cognitive aging using VBM and visual rating scales.
Neuroimage Clin. 2019;22:101697. doi: 10.1016/j.nicl.2019.101697. Epub 2019 Feb 5.
7
Scalar-on-Image Regression via the Soft-Thresholded Gaussian Process.
Biometrika. 2018 Mar;105(1):165-184. doi: 10.1093/biomet/asx075. Epub 2018 Jan 19.
9
Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set.
Alzheimer Dis Assoc Disord. 2018 Oct-Dec;32(4):351-358. doi: 10.1097/WAD.0000000000000279.
10
Religious Orders Study and Rush Memory and Aging Project.
J Alzheimers Dis. 2018;64(s1):S161-S189. doi: 10.3233/JAD-179939.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验