Suppr超能文献

通过贝叶斯推理对健康衰老和阿尔茨海默病队列中神经退行性变随时间的比较。

Comparisons of neurodegeneration over time between healthy ageing and Alzheimer's disease cohorts via Bayesian inference.

作者信息

Cespedes Marcela I, Fripp Jurgen, McGree James M, Drovandi Christopher C, Mengersen Kerrie, Doecke James D

机构信息

School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

CSIRO Digital Productivity and Services, Australia E-Health Research Centre, Herston, Queensland, Australia.

出版信息

BMJ Open. 2017 Feb 7;7(2):e012174. doi: 10.1136/bmjopen-2016-012174.

Abstract

OBJECTIVES

In recent years, large-scale longitudinal neuroimaging studies have improved our understanding of healthy ageing and pathologies including Alzheimer's disease (AD). A particular focus of these studies is group differences and identification of participants at risk of deteriorating to a worse diagnosis. For this, statistical analysis using linear mixed-effects (LME) models are used to account for correlated observations from individuals measured over time. A Bayesian framework for LME models in AD is introduced in this paper to provide additional insight often not found in current LME volumetric analyses.

SETTING AND PARTICIPANTS

Longitudinal neuroimaging case study of ageing was analysed in this research on 260 participants diagnosed as either healthy controls (HC), mild cognitive impaired (MCI) or AD. Bayesian LME models for the ventricle and hippocampus regions were used to: (1) estimate how the volumes of these regions change over time by diagnosis, (2) identify high-risk non-AD individuals with AD like degeneration and (3) determine probabilistic trajectories of diagnosis groups over age.

RESULTS

We observed (1) large differences in the average rate of change of volume for the ventricle and hippocampus regions between diagnosis groups, (2) high-risk individuals who had progressed from HC to MCI and displayed similar rates of deterioration as AD counterparts, and (3) critical time points which indicate where deterioration of regions begins to diverge between the diagnosis groups.

CONCLUSIONS

To the best of our knowledge, this is the first application of Bayesian LME models to neuroimaging data which provides inference on a population and individual level in the AD field. The application of a Bayesian LME framework allows for additional information to be extracted from longitudinal studies. This provides health professionals with valuable information of neurodegeneration stages, and a potential to provide a better understanding of disease pathology.

摘要

目的

近年来,大规模纵向神经影像学研究增进了我们对健康衰老以及包括阿尔茨海默病(AD)在内的病症的理解。这些研究的一个特别关注点是组间差异以及识别有恶化至更差诊断风险的参与者。为此,使用线性混合效应(LME)模型进行统计分析,以考虑个体随时间测量的相关观测值。本文引入了AD中LME模型的贝叶斯框架,以提供当前LME体积分析中通常未发现的额外见解。

设置与参与者

本研究对260名被诊断为健康对照(HC)、轻度认知障碍(MCI)或AD的参与者进行了衰老纵向神经影像学案例研究。使用脑室和海马区域的贝叶斯LME模型来:(1)估计这些区域的体积如何随诊断时间变化,(2)识别具有AD样退化的高风险非AD个体,以及(3)确定诊断组随年龄的概率轨迹。

结果

我们观察到:(1)诊断组之间脑室和海马区域体积平均变化率存在巨大差异,(2)从HC进展到MCI并表现出与AD患者相似恶化率的高风险个体,以及(3)关键时间点,表明诊断组之间区域恶化开始出现差异的位置。

结论

据我们所知,这是贝叶斯LME模型首次应用于神经影像学数据,在AD领域提供了群体和个体水平的推断。贝叶斯LME框架的应用允许从纵向研究中提取额外信息。这为健康专业人员提供了神经退行性变阶段的宝贵信息,并有可能更好地理解疾病病理学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8d9/5306526/9de0fdc69cb2/bmjopen2016012174f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验