文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习模型检测气胸:从放射科医生标签与自然语言处理模型生成标签中学习。

Detection of Pneumothorax with Deep Learning Models: Learning From Radiologist Labels vs Natural Language Processing Model Generated Labels.

机构信息

Department of Diagnostic Imaging, National University Hospital, Singapore.

Saw Swee Hock School of Public Health, Institute of Data Science, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore.

出版信息

Acad Radiol. 2022 Sep;29(9):1350-1358. doi: 10.1016/j.acra.2021.09.013. Epub 2021 Oct 12.


DOI:10.1016/j.acra.2021.09.013
PMID:34649780
Abstract

RATIONALE AND OBJECTIVES: To compare the performance of pneumothorax deep learning detection models trained with radiologist versus natural language processing (NLP) labels on the NIH ChestX-ray14 dataset. MATERIALS AND METHODS: The ChestX-ray14 dataset consisted of 112,120 frontal chest radiographs with 5302 positive and 106, 818 negative labels for pneumothorax using NLP (dataset A). All 112,120 radiographs were also inspected by 4 radiologists leaving a visually confirmed set of 5,138 positive and 104,751 negative for pneumothorax (dataset B). Datasets A and B were used independently to train 3 convolutional neural network (CNN) architectures (ResNet-50, DenseNet-121 and EfficientNetB3). All models' area under the receiver operating characteristic curve (AUC) were evaluated with the official NIH test set and an external test set of 525 chest radiographs from our emergency department. RESULTS: There were significantly higher AUCs on the NIH internal test set for CNN models trained with radiologist vs NLP labels across all architectures. AUCs for the NLP/radiologist-label models were 0.838 (95%CI:0.830, 0.846)/0.881 (95%CI:0.873,0.887) for ResNet-50 (p = 0.034), 0.839 (95%CI:0.831,0.847)/0.880 (95%CI:0.873,0.887) for DenseNet-121, and 0.869 (95%CI: 0.863,0.876)/0.943 (95%CI: 0.939,0.946) for EfficientNetB3 (p ≤0.001). Evaluation with the external test set also showed higher AUCs (p <0.001) for the CNN models trained with radiologist versus NLP labels across all architectures. The AUCs for the NLP/radiologist-label models were 0.686 (95%CI:0.632,0.740)/0.806 (95%CI:0.758,0.854) for ResNet-50, 0.736 (95%CI:0.686, 0.787)/0.871 (95%CI:0.830,0.912) for DenseNet-121, and 0.822 (95%CI: 0.775,0.868)/0.915 (95%CI: 0.882,0.948) for EfficientNetB3. CONCLUSION: We demonstrated improved performance and generalizability of pneumothorax detection deep learning models trained with radiologist labels compared to models trained with NLP labels.

摘要

背景与目的:比较使用放射科医生标签与自然语言处理(NLP)标签训练的气胸深度学习检测模型在 NIH ChestX-ray14 数据集上的性能。 材料与方法:ChestX-ray14 数据集包含 112120 张正面胸部 X 光片,使用 NLP 对 5302 张阳性和 106818 张阴性气胸进行标签(数据集 A)。所有 112120 张 X 光片均由 4 名放射科医生进行检查,留下一组 5138 张阳性和 104751 张阴性气胸的视觉确认标签(数据集 B)。数据集 A 和 B 分别用于训练 3 个卷积神经网络(CNN)架构(ResNet-50、DenseNet-121 和 EfficientNetB3)。使用官方 NIH 测试集和来自我们急诊室的 525 张胸部 X 光片的外部测试集评估所有模型的接收器工作特征曲线(ROC)下面积(AUC)。 结果:在所有架构中,使用放射科医生标签而非 NLP 标签训练的 CNN 模型在 NIH 内部测试集上的 AUC 显著更高。ResNet-50 上的 AUC 为 0.838(95%CI:0.830,0.846)/0.881(95%CI:0.873,0.887),DenseNet-121 上的 AUC 为 0.839(95%CI:0.831,0.847)/0.880(95%CI:0.873,0.887),EfficientNetB3 上的 AUC 为 0.869(95%CI:0.863,0.876)/0.943(95%CI:0.939,0.946)(p ≤0.001)。使用外部测试集评估也显示,在所有架构中,使用放射科医生标签而非 NLP 标签训练的 CNN 模型的 AUC 更高(p<0.001)。ResNet-50 上的 AUC 为 0.686(95%CI:0.632,0.740)/0.806(95%CI:0.758,0.854),DenseNet-121 上的 AUC 为 0.736(95%CI:0.686,0.787)/0.871(95%CI:0.830,0.912),EfficientNetB3 上的 AUC 为 0.822(95%CI:0.775,0.868)/0.915(95%CI:0.882,0.948)。 结论:与使用 NLP 标签训练的模型相比,我们证明了使用放射科医生标签训练的气胸检测深度学习模型在性能和泛化能力方面有所提高。

相似文献

[1]
Detection of Pneumothorax with Deep Learning Models: Learning From Radiologist Labels vs Natural Language Processing Model Generated Labels.

Acad Radiol. 2022-9

[2]
Comparison of radiologist versus natural language processing-based image annotations for deep learning system for tuberculosis screening on chest radiographs.

Clin Imaging. 2022-7

[3]
Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation.

Radiology. 2019-12-3

[4]
Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study.

PLoS Med. 2018-11-20

[5]
Effect of Training Data Volume on Performance of Convolutional Neural Network Pneumothorax Classifiers.

J Digit Imaging. 2022-8

[6]
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.

PLoS Med. 2018-11-20

[7]
German CheXpert Chest X-ray Radiology Report Labeler.

Rofo. 2024-9

[8]
Deep-Learning-Based Diagnosis of Bedside Chest X-ray in Intensive Care and Emergency Medicine.

Invest Radiol. 2021-8-1

[9]
CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks.

PLoS One. 2020

[10]
Application of deep learning-based computer-aided detection system: detecting pneumothorax on chest radiograph after biopsy.

Eur Radiol. 2019-3-26

引用本文的文献

[1]
Anomaly detection in medical via multimodal foundation models.

Front Bioeng Biotechnol. 2025-8-12

[2]
Enhancing chest X-ray datasets with privacy-preserving large language models and multi-type annotations: A data-driven approach for improved classification.

Med Image Anal. 2025-1

[3]
Utilizing ChatGPT for Curriculum Learning in Developing a Clinical Grade Pneumothorax Detection Model: A Multisite Validation Study.

J Clin Med. 2024-7-10

[4]
Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis.

Eur Respir Rev. 2023-6-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索