Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
Department of Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
PLoS One. 2020 Nov 9;15(11):e0242013. doi: 10.1371/journal.pone.0242013. eCollection 2020.
Pneumothorax can lead to a life-threatening emergency. The experienced radiologists can offer precise diagnosis according to the chest radiographs. The localization of the pneumothorax lesions will help to quickly diagnose, which will be benefit for the patients in the underdevelopment areas lack of the experienced radiologists. In recent years, with the development of large neural network architectures and medical imaging datasets, deep learning methods have become a methodology of choice for analyzing medical images. The objective of this study was to the construct convolutional neural networks to localize the pneumothorax lesions in chest radiographs.
We developed a convolutional neural network, called CheXLocNet, for the segmentation of pneumothorax lesions. The SIIM-ACR Pneumothorax Segmentation dataset was used to train and validate CheXLocNets. The training dataset contained 2079 radiographs with the annotated lesion areas. We trained six CheXLocNets with various hyperparameters. Another 300 annotated radiographs were used to select parameters of these CheXLocNets as the validation set. We determined the optimal parameters by the AP50 (average precision at the intersection over union (IoU) equal to 0.50), a segmentation evaluation metric used by several well-known competitions. Then CheXLocNets were evaluated by a test set (1082 normal radiographs and 290 disease radiographs), based on the classification metrics: area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and positive predictive value (PPV); segmentation metrics: IoU and Dice score. For the classification, CheXLocNet with best sensitivity produced an AUC of 0.87, sensitivity of 0.78 (95% CI 0.73-0.83), and specificity of 0.78 (95% CI 0.76-0.81). CheXLocNet with best specificity produced an AUC of 0.79, sensitivity of 0.46 (95% CI 0.40-0.52), and specificity of 0.92 (95% CI 0.90-0.94). For the segmentation, CheXLocNet with best sensitivity produced an IoU of 0.69 and Dice score of 0.72. CheXLocNet with best specificity produced an IoU of 0.77 and Dice score of 0.79. We combined them to form an ensemble CheXLocNet. The ensemble CheXLocNet produced an IoU of 0.81 and Dice score of 0.82. Our CheXLocNet succeeded in automatically detecting pneumothorax lesions, without any human guidance.
In this study, we proposed a deep learning network, called, CheXLocNet, for the automatic segmentation of chest radiographs to detect pneumothorax. Our CheXLocNets generated accurate classification results and high-quality segmentation masks for the pneumothorax at the same time. This technology has the potential to improve healthcare delivery and increase access to chest radiograph expertise for the detection of diseases. Furthermore, the segmentation results can offer comprehensive geometric information of lesions, which can benefit monitoring the sequential development of lesions with high accuracy. Thus, CheXLocNets can be further extended to be a reliable clinical decision support tool. Although we used transfer learning in training CheXLocNet, the parameters of CheXLocNet was still large for the radiograph dataset. Further work is necessary to prune CheXLocNet suitable for the radiograph dataset.
气胸可导致危及生命的紧急情况。经验丰富的放射科医生可以根据胸部 X 光片做出准确的诊断。气胸病变的定位有助于快速诊断,这将有利于欠发达地区缺乏经验丰富的放射科医生的患者。近年来,随着大型神经网络架构和医学成像数据集的发展,深度学习方法已成为分析医学图像的首选方法。本研究的目的是构建卷积神经网络,以便对胸部 X 光片中的气胸病变进行定位。
我们开发了一种名为 CheXLocNet 的卷积神经网络,用于气胸病变的分割。SIIM-ACR 气胸分割数据集用于训练和验证 CheXLocNets。训练数据集包含 2079 张带有注释病变区域的 X 光片。我们使用各种超参数训练了六个 CheXLocNets。另外 300 张标注 X 光片用于选择这些 CheXLocNets 的参数作为验证集。我们通过平均精度在交集与并集(IoU)等于 0.50 处的 AP50(分段评估指标)来确定最佳参数,该指标被几个知名竞赛使用。然后,根据分类指标(接收器操作特征曲线下的面积(AUC)、敏感性、特异性和阳性预测值(PPV);分段指标:IoU 和 Dice 评分),使用包含 1082 张正常 X 光片和 290 张疾病 X 光片的测试集对 CheXLocNets 进行评估。CheXLocNet 具有最佳敏感性的分类产生 AUC 为 0.87,敏感性为 0.78(95%CI 0.73-0.83),特异性为 0.78(95%CI 0.76-0.81)。CheXLocNet 具有最佳特异性的分类产生 AUC 为 0.79,敏感性为 0.46(95%CI 0.40-0.52),特异性为 0.92(95%CI 0.90-0.94)。对于分割,具有最佳敏感性的 CheXLocNet 产生的 IoU 为 0.69,Dice 得分为 0.72。具有最佳特异性的 CheXLocNet 产生的 IoU 为 0.77,Dice 得分为 0.79。我们将它们组合在一起形成一个集成 CheXLocNet。集成 CheXLocNet 产生的 IoU 为 0.81,Dice 得分为 0.82。我们的 CheXLocNet 成功地自动检测气胸病变,无需任何人为指导。
在这项研究中,我们提出了一种名为 CheXLocNet 的深度学习网络,用于自动分割胸部 X 光片以检测气胸。我们的 CheXLocNets 同时产生了气胸的准确分类结果和高质量的分割掩模。这项技术有可能改善医疗服务的提供,并增加获得胸部 X 光片专业知识以检测疾病的机会。此外,分割结果可以提供病变的全面几何信息,这可以高精度地帮助监测病变的连续发展。因此,CheXLocNets 可以进一步扩展为可靠的临床决策支持工具。尽管我们在训练 CheXLocNet 时使用了迁移学习,但 CheXLocNet 的参数对于 X 光片数据集仍然很大。进一步的工作是必要的,以修剪 CheXLocNet 以适应 X 光片数据集。