文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

训练数据量对卷积神经网络气胸分类器性能的影响。

Effect of Training Data Volume on Performance of Convolutional Neural Network Pneumothorax Classifiers.

机构信息

Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Queenstown, 119074, Singapore.

Saw Swee Hock School of Public Health, School of Computer Science, Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, #10-01, Queenstown, 117549, Singapore.

出版信息

J Digit Imaging. 2022 Aug;35(4):881-892. doi: 10.1007/s10278-022-00594-y. Epub 2022 Mar 3.


DOI:10.1007/s10278-022-00594-y
PMID:35239091
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9485337/
Abstract

Large datasets with high-quality labels required to train deep neural networks are challenging to obtain in the radiology domain. This work investigates the effect of training dataset size on the performance of deep learning classifiers, focusing on chest radiograph pneumothorax detection as a proxy visual task in the radiology domain. Two open-source datasets (ChestX-ray14 and CheXpert) comprising 291,454 images were merged and convolutional neural networks trained with stepwise increase in training dataset sizes. Model iterations at each dataset volume were evaluated on an external test set of 525 emergency department chest radiographs. Learning curve analysis was performed to fit the observed AUCs for all models generated. For all three network architectures tested, model AUCs and accuracy increased rapidly from 2 × 10 to 20 × 10 training samples, with more gradual increase until the maximum training dataset size of 291 × 10 images. AUCs for models trained with the maximum tested dataset size of 291 × 10 images were significantly higher than models trained with 20 × 10 images: ResNet-50: AUC = 0.86, AUC = 0.95, p < 0.001; DenseNet-121 AUC = 0.85, AUC = 0.93, p < 0.001; EfficientNet AUC = 0.92, AUC  = 0.98, p < 0.001. Our study established learning curves describing the relationship between dataset training size and model performance of deep learning convolutional neural networks applied to a typical radiology binary classification task. These curves suggest a point of diminishing performance returns for increasing training data volumes, which algorithm developers should consider given the high costs of obtaining and labelling radiology data.

摘要

大型、高质量标注的数据集对于训练深度神经网络来说具有挑战性,在放射学领域尤其如此。本研究旨在探讨训练数据集大小对深度学习分类器性能的影响,以胸部 X 光片气胸检测作为放射学领域的代表性视觉任务。我们合并了两个开源数据集(ChestX-ray14 和 CheXpert),共包含 291,454 张图像,并使用逐步增加训练数据集大小的方法训练卷积神经网络。在一个包含 525 张急诊科胸部 X 光片的外部测试集中评估了每个数据集容量的模型迭代。我们进行了学习曲线分析,以拟合所有生成模型的观测 AUC。对于测试的三种网络架构,模型 AUC 和准确率在从 2×10 到 20×10 个训练样本时快速增加,然后在达到 291×10 个图像的最大训练数据集大小时逐渐增加。使用最大测试数据集大小(291×10 个图像)训练的模型的 AUC 明显高于使用 20×10 个图像训练的模型:ResNet-50:AUC=0.86,AUC=0.95,p<0.001;DenseNet-121 AUC=0.85,AUC=0.93,p<0.001;EfficientNet AUC=0.92,AUC=0.98,p<0.001。本研究建立了描述深度学习卷积神经网络应用于典型放射学二分类任务时,数据集训练大小与模型性能之间关系的学习曲线。这些曲线表明,随着训练数据量的增加,性能回报会逐渐减少,算法开发人员应该考虑到获取和标注放射学数据的高成本。

相似文献

[1]
Effect of Training Data Volume on Performance of Convolutional Neural Network Pneumothorax Classifiers.

J Digit Imaging. 2022-8

[2]
Detection of Pneumothorax with Deep Learning Models: Learning From Radiologist Labels vs Natural Language Processing Model Generated Labels.

Acad Radiol. 2022-9

[3]
Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study.

PLoS Med. 2018-11-20

[4]
CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks.

PLoS One. 2020

[5]
German CheXpert Chest X-ray Radiology Report Labeler.

Rofo. 2024-9

[6]
Can AI outperform a junior resident? Comparison of deep neural network to first-year radiology residents for identification of pneumothorax.

Emerg Radiol. 2020-8

[7]
Deep learning prediction of sex on chest radiographs: a potential contributor to biased algorithms.

Emerg Radiol. 2022-4

[8]
Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs.

J Digit Imaging. 2019-12

[9]
Deep multi-instance transfer learning for pneumothorax classification in chest X-ray images.

Med Phys. 2022-1

[10]
Radiology "forensics": determination of age and sex from chest radiographs using deep learning.

Emerg Radiol. 2021-10

引用本文的文献

[1]
In vivo variability of MRI radiomics features in prostate lesions assessed by a test-retest study with repositioning.

Sci Rep. 2025-8-13

[2]
Dosing prediction of valproic acid in pediatric patients with epilepsy: population pharmacokinetic model or machine learning model?

Eur J Clin Pharmacol. 2025-7-5

[3]
A low-cost platform for automated cervical cytology: addressing health and socioeconomic challenges in low-resource settings.

Front Med Technol. 2025-3-31

[4]
Detection of C-shaped mandibular second molars on panoramic radiographs using deep convolutional neural networks.

Clin Oral Investig. 2024-11-18

[5]
Comparison of three artificial intelligence algorithms for automatic cobb angle measurement using teaching data specific to three disease groups.

Sci Rep. 2024-8-3

[6]
Radiographic chest wall abnormalities in primary spontaneous pneumothorax identified by artificial intelligence.

Heliyon. 2024-4-30

[7]
Automated segmentation and volume prediction in pediatric Wilms' tumor CT using nnu-net.

BMC Pediatr. 2024-5-9

[8]
Privacy, Please: Safeguarding Medical Data in Imaging AI Using Differential Privacy Techniques.

Radiol Artif Intell. 2024-1

[9]
Innovative advances in pediatric radiology: computed tomography reconstruction techniques, photon-counting detector computed tomography, and beyond.

Pediatr Radiol. 2024-1

[10]
Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis.

Eur Respir Rev. 2023-6-30

本文引用的文献

[1]
Challenges Related to Artificial Intelligence Research in Medical Imaging and the Importance of Image Analysis Competitions.

Radiol Artif Intell. 2019-1-30

[2]
Preparing Medical Imaging Data for Machine Learning.

Radiology. 2020-2-18

[3]
Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation.

Radiology. 2019-12-3

[4]
Exploring Large-scale Public Medical Image Datasets.

Acad Radiol. 2019-11-6

[5]
Key challenges for delivering clinical impact with artificial intelligence.

BMC Med. 2019-10-29

[6]
Deep-Learning-Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size.

J Magn Reson Imaging. 2020-5

[7]
Sample-Size Determination Methodologies for Machine Learning in Medical Imaging Research: A Systematic Review.

Can Assoc Radiol J. 2019-9-12

[8]
Privacy in the age of medical big data.

Nat Med. 2019-1-7

[9]
Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs.

Radiology. 2018-11-13

[10]
Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.

Clin Radiol. 2018-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索