Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Queenstown, 119074, Singapore.
Saw Swee Hock School of Public Health, School of Computer Science, Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, #10-01, Queenstown, 117549, Singapore.
J Digit Imaging. 2022 Aug;35(4):881-892. doi: 10.1007/s10278-022-00594-y. Epub 2022 Mar 3.
Large datasets with high-quality labels required to train deep neural networks are challenging to obtain in the radiology domain. This work investigates the effect of training dataset size on the performance of deep learning classifiers, focusing on chest radiograph pneumothorax detection as a proxy visual task in the radiology domain. Two open-source datasets (ChestX-ray14 and CheXpert) comprising 291,454 images were merged and convolutional neural networks trained with stepwise increase in training dataset sizes. Model iterations at each dataset volume were evaluated on an external test set of 525 emergency department chest radiographs. Learning curve analysis was performed to fit the observed AUCs for all models generated. For all three network architectures tested, model AUCs and accuracy increased rapidly from 2 × 10 to 20 × 10 training samples, with more gradual increase until the maximum training dataset size of 291 × 10 images. AUCs for models trained with the maximum tested dataset size of 291 × 10 images were significantly higher than models trained with 20 × 10 images: ResNet-50: AUC = 0.86, AUC = 0.95, p < 0.001; DenseNet-121 AUC = 0.85, AUC = 0.93, p < 0.001; EfficientNet AUC = 0.92, AUC = 0.98, p < 0.001. Our study established learning curves describing the relationship between dataset training size and model performance of deep learning convolutional neural networks applied to a typical radiology binary classification task. These curves suggest a point of diminishing performance returns for increasing training data volumes, which algorithm developers should consider given the high costs of obtaining and labelling radiology data.
大型、高质量标注的数据集对于训练深度神经网络来说具有挑战性,在放射学领域尤其如此。本研究旨在探讨训练数据集大小对深度学习分类器性能的影响,以胸部 X 光片气胸检测作为放射学领域的代表性视觉任务。我们合并了两个开源数据集(ChestX-ray14 和 CheXpert),共包含 291,454 张图像,并使用逐步增加训练数据集大小的方法训练卷积神经网络。在一个包含 525 张急诊科胸部 X 光片的外部测试集中评估了每个数据集容量的模型迭代。我们进行了学习曲线分析,以拟合所有生成模型的观测 AUC。对于测试的三种网络架构,模型 AUC 和准确率在从 2×10 到 20×10 个训练样本时快速增加,然后在达到 291×10 个图像的最大训练数据集大小时逐渐增加。使用最大测试数据集大小(291×10 个图像)训练的模型的 AUC 明显高于使用 20×10 个图像训练的模型:ResNet-50:AUC=0.86,AUC=0.95,p<0.001;DenseNet-121 AUC=0.85,AUC=0.93,p<0.001;EfficientNet AUC=0.92,AUC=0.98,p<0.001。本研究建立了描述深度学习卷积神经网络应用于典型放射学二分类任务时,数据集训练大小与模型性能之间关系的学习曲线。这些曲线表明,随着训练数据量的增加,性能回报会逐渐减少,算法开发人员应该考虑到获取和标注放射学数据的高成本。
Clin Oral Investig. 2024-11-18
Radiol Artif Intell. 2024-1
Eur Respir Rev. 2023-6-30
Radiology. 2020-2-18
Acad Radiol. 2019-11-6
BMC Med. 2019-10-29
J Magn Reson Imaging. 2020-5
Can Assoc Radiol J. 2019-9-12
Nat Med. 2019-1-7