Suppr超能文献

基于扫描的竞争死亡风险模型,用于重新评估肺癌计算机断层扫描筛查的资格。

Scan-based competing death risk model for re-evaluating lung cancer computed tomography screening eligibility.

作者信息

Schreuder Anton, Jacobs Colin, Lessmann Nikolas, Broeders Mireille J M, Silva Mario, Išgum Ivana, de Jong Pim A, van den Heuvel Michel M, Sverzellati Nicola, Prokop Mathias, Pastorino Ugo, Schaefer-Prokop Cornelia M, van Ginneken Bram

机构信息

Dept of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands

Dept of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

Eur Respir J. 2022 May 12;59(5). doi: 10.1183/13993003.01613-2021. Print 2022 May.

Abstract

BACKGROUND

A baseline computed tomography (CT) scan for lung cancer (LC) screening may reveal information indicating that certain LC screening participants can be screened less, and instead require dedicated early cardiac and respiratory clinical input. We aimed to develop and validate competing death (CD) risk models using CT information to identify participants with a low LC risk and a high CD risk.

METHODS

Participant demographics and quantitative CT measures of LC, cardiovascular disease and chronic obstructive pulmonary disease were considered for deriving a logistic regression model for predicting 5-year CD risk using a sample from the National Lung Screening Trial (n=15 000). Multicentric Italian Lung Detection data were used to perform external validation (n=2287).

RESULTS

Our final CD model outperformed an external pre-scan model (CD Risk Assessment Tool) in both the derivation (area under the curve (AUC) 0.744 (95% CI 0.727-0.761) and 0.677 (95% CI 0.658-0.695), respectively) and validation cohorts (AUC 0.744 (95% CI 0.652-0.835) and 0.725 (95% CI 0.633-0.816), respectively). By also taking LC incidence risk into consideration, we suggested a risk threshold where a subgroup (6258/23 096 (27%)) was identified with a number needed to screen to detect one LC of 216 ( 23 in the remainder of the cohort) and ratio of 5.41 CDs per LC case ( 0.88). The respective values in the validation cohort subgroup (774/2287 (34%)) were 129 ( 29) and 1.67 ( 0.43).

CONCLUSIONS

Evaluating both LC and CD risks post-scan may improve the efficiency of LC screening and facilitate the initiation of multidisciplinary trajectories among certain participants.

摘要

背景

用于肺癌(LC)筛查的基线计算机断层扫描(CT)可能会揭示一些信息,表明某些LC筛查参与者可以减少筛查次数,转而需要专门的早期心脏和呼吸科临床投入。我们旨在开发并验证竞争死亡(CD)风险模型,利用CT信息识别出LC风险低且CD风险高的参与者。

方法

考虑参与者的人口统计学信息以及LC、心血管疾病和慢性阻塞性肺疾病的定量CT测量值,使用来自国家肺癌筛查试验的样本(n = 15000)推导用于预测5年CD风险的逻辑回归模型。多中心意大利肺癌检测数据用于进行外部验证(n = 2287)。

结果

我们最终的CD模型在推导队列(曲线下面积(AUC)分别为0.744(95%CI 0.727 - 0.761)和0.677(95%CI 0.658 - 0.695))和验证队列(AUC分别为0.744(95%CI 0.652 - 0.835)和0.725(95%CI 0.633 - 0.816))中均优于外部扫描前模型(CD风险评估工具)。通过同时考虑LC发病风险,我们提出了一个风险阈值,在此阈值下识别出一个亚组(6258/23096(27%)),该亚组筛查出一例LC所需的筛查人数为216(队列其余部分为23),每例LC病例的CD比例为5.41(0.88)。验证队列亚组(774/2287(34%))中的相应值分别为129(29)和1.67(0.43)。

结论

扫描后评估LC和CD风险可能会提高LC筛查的效率,并有助于某些参与者启动多学科诊疗流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验