Sorokin Maxim, Gorelyshev Alexander, Efimov Victor, Zotova Evgenia, Zolotovskaia Marianna, Rabushko Elizaveta, Kuzmin Denis, Seryakov Alexander, Kamashev Dmitry, Li Xinmin, Poddubskaya Elena, Suntsova Maria, Buzdin Anton
Biostatistics and Bioinformatics Subgroup, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium.
The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
Front Oncol. 2021 Sep 28;11:732644. doi: 10.3389/fonc.2021.732644. eCollection 2021.
Tumor mutation burden (TMB) is a well-known efficacy predictor for checkpoint inhibitor immunotherapies. Currently, TMB assessment relies on DNA sequencing data. Gene expression profiling by RNA sequencing (RNAseq) is another type of analysis that can inform clinical decision-making and including TMB estimation may strongly benefit this approach, especially for the formalin-fixed, paraffin-embedded (FFPE) tissue samples. Here, we for the first time compared TMB levels deduced from whole exome sequencing (WES) and RNAseq profiles of the same FFPE biosamples in single-sample mode. We took TCGA project data with mean sequencing depth 23 million gene-mapped reads (MGMRs) and found 0.46 (Pearson)-0.59 (Spearman) correlation with standard mutation calling pipelines. This was converted into low (<10) and high (>10) TMB per megabase classifier with area under the curve (AUC) 0.757, and application of machine learning increased AUC till 0.854. We then compared 73 experimental pairs of WES and RNAseq profiles with lower (mean 11 MGMRs) and higher (mean 68 MGMRs) RNA sequencing depths. For higher depth, we observed ~1 AUC for the high/low TMB classifier and 0.85 (Pearson)-0.95 (Spearman) correlation with standard mutation calling pipelines. For the lower depth, the AUC was below the high-quality threshold of 0.7. Thus, we conclude that using RNA sequencing of tumor materials from FFPE blocks with enough coverage can afford for high-quality discrimination of tumors with high and low TMB levels in a single-sample mode.
肿瘤突变负荷(TMB)是一种众所周知的检查点抑制剂免疫疗法的疗效预测指标。目前,TMB评估依赖于DNA测序数据。通过RNA测序(RNAseq)进行基因表达谱分析是另一种可用于指导临床决策的分析类型,纳入TMB估计可能会使这种方法受益匪浅,尤其是对于福尔马林固定、石蜡包埋(FFPE)组织样本。在此,我们首次在单样本模式下比较了从相同FFPE生物样本的全外显子测序(WES)和RNAseq谱推断出的TMB水平。我们采用了TCGA项目中平均测序深度为2300万个基因映射读数(MGMRs)的数据,发现与标准突变检测流程的相关性为0.46(皮尔逊)-0.59(斯皮尔曼)。这被转换为每兆碱基低(<10)和高(>10)TMB分类器,曲线下面积(AUC)为0.757,应用机器学习可将AUC提高至0.854。然后,我们比较了73对RNA测序深度较低(平均11 MGMRs)和较高(平均68 MGMRs)的WES和RNAseq谱实验对。对于较高深度,我们观察到高/低TMB分类器的AUC约为1,与标准突变检测流程的相关性为0.85(皮尔逊)-0.95(斯皮尔曼)。对于较低深度,AUC低于0.7的高质量阈值。因此,我们得出结论,对来自FFPE组织块的肿瘤材料进行具有足够覆盖度的RNA测序,能够在单样本模式下对高TMB和低TMB水平的肿瘤进行高质量区分。