Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States.
J Phys Chem B. 2021 Oct 28;125(42):11709-11716. doi: 10.1021/acs.jpcb.1c07127. Epub 2021 Oct 15.
We present a model to explain the mechanism behind enantiomeric separation under either shear flow or local rotational motion in a fluid. Local vorticity of the fluid imparts molecular rotation that couples to translational motion, sending enantiomers in opposite directions. Translation-rotation coupling of enantiomers is explored using the molecular hydrodynamic resistance tensor, and a molecular equivalent of the pitch of a screw is introduced to describe the degree of translation-rotation coupling. Molecular pitch is a structural feature of the molecules and can be easily computed, allowing rapid estimation of the pitch of 85 druglike molecules. Simulations of model enantiomers in a range of fluids such as Λ- and Δ-[Ru(bpy)]Cl in water and (, )- and (, )-atorvastatin in methanol support predictions made using molecular pitch values. A competition model and continuum drift-diffusion equations are developed to predict separation of realistic racemic mixtures. We find that enantiomeric separation on a centimeter length scale can be achieved in hours, using experimentally achievable vorticities. Additionally, we find that certain achiral objects can also exhibit a nonzero molecular pitch.
我们提出了一个模型,用以解释在剪切流或流体中的局部旋转运动下对映体分离的机制。流体的局部涡度赋予分子旋转,分子旋转与平移运动耦合,使对映体朝相反的方向运动。使用分子流体动力阻力张量来探索对映体的平移-旋转耦合,并且引入了分子等效物的螺距来描述平移-旋转耦合的程度。分子螺距是分子的结构特征,并且可以很容易地计算出来,从而可以快速估算 85 种类似药物的分子的螺距。在一系列流体(例如水中的 Λ-和 Δ-[Ru(bpy)]Cl 和甲醇中的 (, )-和 (, )-阿托伐他汀)中对模型对映体的模拟支持使用分子螺距值进行预测。开发了竞争模型和连续体漂移-扩散方程,以预测实际外消旋混合物的分离。我们发现,使用实验上可达到的涡度,可以在几个小时内实现厘米长度尺度上的对映体分离。此外,我们发现某些非手性物体也可以表现出非零的分子螺距。