Suppr超能文献

在超干旱火星模拟环境中的氮循环和生物特征。

Nitrogen Cycling and Biosignatures in a Hyperarid Mars Analog Environment.

机构信息

School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews, United Kingdom.

出版信息

Astrobiology. 2022 Feb;22(2):127-142. doi: 10.1089/ast.2021.0012. Epub 2021 Nov 5.

Abstract

The hyperarid Atacama Desert is a unique Mars-analog environment with a large near-surface soil nitrate reservoir due to the lack of rainfall leaching for millennia. We investigated nitrogen (N) cycling and organic matter dynamics in this nitrate-rich terrestrial environment by analyzing the concentrations and isotopic compositions of nitrate, organic C, and organic N, coupled with microbial pathway-enzyme inferences, across a naturally occurring rainfall gradient. Nitrate deposits in sites with an annual precipitation of <10 mm carry atmospheric δN, δO, and ΔO signatures, while these values are overprinted by biological cycling in sites with >15 mm annual precipitation. Metagenomic analyses suggest that the Atacama Desert harbors a unique biological nitrogen cycle driven by nitrifier denitrification, nitric oxide dioxygenase-driven alternative nitrification, and organic N loss pathways. Nitrate assimilation is the only nitrate consumption pathway available in the driest sites, although some hyperarid sites also support organisms with ammonia lyase- and nitric oxide synthase-driven organic N loss. Nitrifier denitrification is enhanced in the "transition zone" desert environments, which are generally hyperarid but see occasional large rainfall events, and shifts to nitric oxide dioxygenase-driven alternative nitrifications in wetter arid sites. Since extremophilic microorganisms tend to exploit all reachable nutrients, both N and O isotope fractionations during N transformations are reduced. These results suggest that N cycling on the more recent dry Mars might be dominated by nitrate assimilation that cycles atmospheric nitrate and exchanges water O during intermittent wetting, resulting stable isotope biosignatures could shift away from martian atmospheric nitrate endmember. Early wetter Mars could nurture putative life that metabolized nitrate with traceable paleoenvironmental isotopic markers similar to microbial denitrification and nitrification stored in deep subsurface.

摘要

阿塔卡马沙漠是一个极端干旱的火星类似环境,由于数千年来缺乏降雨淋洗作用,其近地表土壤硝酸盐储量巨大。我们通过分析硝酸盐、有机 C 和有机 N 的浓度和同位素组成,以及微生物途径酶的推断,研究了这种富含硝酸盐的陆地环境中的氮(N)循环和有机质动态变化,这些分析横跨了自然发生的降雨梯度。在年降水量<10mm 的地点,硝酸盐沉积物携带大气 δN、δO 和 ΔO 特征,而在年降水量>15mm 的地点,这些值则受到生物循环的影响。宏基因组分析表明,阿塔卡马沙漠拥有一个独特的生物氮循环,由硝化作用反硝化、一氧化氮双加氧酶驱动的替代硝化作用和有机 N 损失途径驱动。硝酸盐同化是最干旱地点唯一可用的硝酸盐消耗途径,尽管一些极干旱地点也支持具有氨裂解酶和一氧化氮合酶驱动的有机 N 损失的生物。在“过渡区”沙漠环境中,硝化作用反硝化作用增强,这些环境通常是极干旱的,但偶尔会发生大量降雨事件,而在较湿润的干旱地区则转变为一氧化氮双加氧酶驱动的替代硝化作用。由于极端微生物倾向于利用所有可利用的营养物质,因此在 N 转化过程中,N 和 O 同位素分馏作用会降低。这些结果表明,在较近期的干燥火星上,N 循环可能主要由硝酸盐同化作用主导,该作用会循环大气硝酸盐并在间歇性湿润过程中交换水 O,从而导致稳定同位素生物特征可能偏离火星大气硝酸盐端元。早期较湿润的火星可能会孕育出利用硝酸盐的潜在生命,这些生命代谢硝酸盐的方式与微生物反硝化和硝化作用相似,并以可追踪的古环境同位素标记物存储在深层地下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b04/8861911/f68566a6f977/ast.2021.0012_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验