Suppr超能文献

构建和验证一套用于检测情绪的面部表情图像:一项跨文化研究。

Building and validation of a set of facial expression images to detect emotions: a transcultural study.

机构信息

Departamento de Psicologia, Universidade Federal de Sergipe, São Cristóvão, Brazil.

Facultad de Psicología, Fundación Universitaria Konrad Lorenz, Bogotá, Colombia.

出版信息

Psychol Res. 2022 Sep;86(6):1996-2006. doi: 10.1007/s00426-021-01605-3. Epub 2021 Oct 15.

Abstract

The automatic emotion recognition from facial expressions has become an exceptional tool in research involving human subjects and has made it possible to obtain objective measurements of the emotional state of research subjects. Different software and commercial solutions are offered to perform this task. However, the adaptation to cultural context and the recognition of complex expressions and/or emotions are two of the main challenges faced by these solutions. Here, we describe the construction and validation of a set of facial expression images suitable for training a recognition system. Our datasets consist of images of people with no experience in acting who were recorded with a webcam as they performed a computer-assisted task in a room with a light background and overhead illumination. The six basic emotions and mockery were included and a combination of OpenCV, Dlib and Scikit-learn Python libraries were used to develop a support vector machine classifier. The code is available at GitHub and the images will be provided upon request. Since transcultural facial expressions to evaluate complex emotions and open-source solutions were used in this study, we strongly believe that our dataset will be useful in different research contexts.

摘要

自动的面部表情情感识别已经成为涉及人类受试者的研究中的一种特殊工具,并且已经使得能够获得研究对象情感状态的客观测量。不同的软件和商业解决方案被提供来执行此任务。然而,适应文化背景和识别复杂的表情和/或情感是这些解决方案面临的两个主要挑战。在这里,我们描述了一组适合训练识别系统的面部表情图像的构建和验证。我们的数据集由没有表演经验的人在一个具有浅色背景和头顶照明的房间里使用网络摄像头记录他们执行计算机辅助任务时的图像组成。包括了六种基本情感和嘲笑,并且使用了 OpenCV、Dlib 和 Scikit-learn Python 库来开发支持向量机分类器。代码可在 GitHub 上获得,并且可以根据要求提供图像。由于在这项研究中使用了跨文化的面部表情来评估复杂的情感和开源解决方案,我们坚信我们的数据集将在不同的研究环境中有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验