Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
Istituto per le Applicazioni del Calcolo "Mauro Picone" - CNR, Via dei Taurini 19, 00185, Rome, Italy.
Brain Topogr. 2021 Nov;34(6):840-862. doi: 10.1007/s10548-021-00874-w. Epub 2021 Oct 15.
Meditation practices have been claimed to have a positive effect on the regulation of mood and emotions for quite some time by practitioners, and in recent times there has been a sustained effort to provide a more precise description of the influence of meditation on the human brain. Longitudinal studies have reported morphological changes in cortical thickness and volume in selected brain regions due to meditation practice, which is interpreted as an evidence its effectiveness beyond the subjective self reporting. Using magnetoencephalography (MEG) or electroencephalography to quantify the changes in brain activity during meditation practice represents a challenge, as no clear hypothesis about the spatial or temporal pattern of such changes is available to date. In this article we consider MEG data collected during meditation sessions of experienced Buddhist monks practicing focused attention (Samatha) and open monitoring (Vipassana) meditation, contrasted by resting state with eyes closed. The MEG data are first mapped to time series of brain activity averaged over brain regions corresponding to a standard Destrieux brain atlas. Next, by bootstrapping and spectral analysis, the data are mapped to matrices representing random samples of power spectral densities in [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] frequency bands. We use linear discriminant analysis to demonstrate that the samples corresponding to different meditative or resting states contain enough fingerprints of the brain state to allow a separation between different states, and we identify the brain regions that appear to contribute to the separation. Our findings suggest that the cingulate cortex, insular cortex and some of the internal structures, most notably the accumbens, the caudate and the putamen nuclei, the thalamus and the amygdalae stand out as separating regions, which seems to correlate well with earlier findings based on longitudinal studies.
冥想练习被从业者声称对情绪和情感的调节有积极影响已有一段时间,最近人们一直在努力更精确地描述冥想对人类大脑的影响。纵向研究报告称,由于冥想练习,大脑特定区域的皮质厚度和体积发生了形态变化,这被解释为其有效性超越主观自我报告的证据。使用脑磁图(MEG)或脑电图来量化冥想练习过程中大脑活动的变化是一个挑战,因为迄今为止还没有关于这种变化的空间或时间模式的明确假设。在本文中,我们考虑了在经验丰富的佛教僧侣进行专注冥想(Samatha)和开放监控(Vipassana)冥想期间收集的 MEG 数据,与闭眼静息状态进行对比。MEG 数据首先被映射到大脑活动的时间序列,该时间序列是在与标准 Destrieux 大脑图谱对应的大脑区域上进行平均的。接下来,通过自举和频谱分析,数据被映射到代表[Formula: see text]、[Formula: see text]、[Formula: see text]和[Formula: see text]频带中随机功率谱密度样本的矩阵。我们使用线性判别分析来证明,对应于不同冥想或静息状态的样本包含足够的大脑状态指纹,以允许在不同状态之间进行分离,并且我们确定了似乎有助于分离的大脑区域。我们的研究结果表明,扣带皮层、岛叶皮层和一些内部结构,特别是伏隔核、尾状核和壳核、丘脑和杏仁核,作为分离区域脱颖而出,这似乎与基于纵向研究的早期发现非常吻合。
Hum Brain Mapp. 2018-1-13
Int J Psychophysiol. 2016-12
Imaging Neurosci (Camb). 2025-5-28
Curr Oncol Rep. 2024-6
Brain Imaging Behav. 2021-10
Front Neuroinform. 2019-3-22
Curr Opin Psychol. 2018-12-27
Front Integr Neurosci. 2018-6-22