文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

挖掘思维:MEG 源重建时间序列的线性判别分析支持冥想过程中深部脑区的动态变化。

Mining the Mind: Linear Discriminant Analysis of MEG Source Reconstruction Time Series Supports Dynamic Changes in Deep Brain Regions During Meditation Sessions.

机构信息

Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.

Istituto per le Applicazioni del Calcolo "Mauro Picone" - CNR, Via dei Taurini 19, 00185, Rome, Italy.

出版信息

Brain Topogr. 2021 Nov;34(6):840-862. doi: 10.1007/s10548-021-00874-w. Epub 2021 Oct 15.


DOI:10.1007/s10548-021-00874-w
PMID:34652578
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8556220/
Abstract

Meditation practices have been claimed to have a positive effect on the regulation of mood and emotions for quite some time by practitioners, and in recent times there has been a sustained effort to provide a more precise description of the influence of meditation on the human brain. Longitudinal studies have reported morphological changes in cortical thickness and volume in selected brain regions due to meditation practice, which is interpreted as an evidence its effectiveness beyond the subjective self reporting. Using magnetoencephalography (MEG) or electroencephalography to quantify the changes in brain activity during meditation practice represents a challenge, as no clear hypothesis about the spatial or temporal pattern of such changes is available to date. In this article we consider MEG data collected during meditation sessions of experienced Buddhist monks practicing focused attention (Samatha) and open monitoring (Vipassana) meditation, contrasted by resting state with eyes closed. The MEG data are first mapped to time series of brain activity averaged over brain regions corresponding to a standard Destrieux brain atlas. Next, by bootstrapping and spectral analysis, the data are mapped to matrices representing random samples of power spectral densities in [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] frequency bands. We use linear discriminant analysis to demonstrate that the samples corresponding to different meditative or resting states contain enough fingerprints of the brain state to allow a separation between different states, and we identify the brain regions that appear to contribute to the separation. Our findings suggest that the cingulate cortex, insular cortex and some of the internal structures, most notably the accumbens, the caudate and the putamen nuclei, the thalamus and the amygdalae stand out as separating regions, which seems to correlate well with earlier findings based on longitudinal studies.

摘要

冥想练习被从业者声称对情绪和情感的调节有积极影响已有一段时间,最近人们一直在努力更精确地描述冥想对人类大脑的影响。纵向研究报告称,由于冥想练习,大脑特定区域的皮质厚度和体积发生了形态变化,这被解释为其有效性超越主观自我报告的证据。使用脑磁图(MEG)或脑电图来量化冥想练习过程中大脑活动的变化是一个挑战,因为迄今为止还没有关于这种变化的空间或时间模式的明确假设。在本文中,我们考虑了在经验丰富的佛教僧侣进行专注冥想(Samatha)和开放监控(Vipassana)冥想期间收集的 MEG 数据,与闭眼静息状态进行对比。MEG 数据首先被映射到大脑活动的时间序列,该时间序列是在与标准 Destrieux 大脑图谱对应的大脑区域上进行平均的。接下来,通过自举和频谱分析,数据被映射到代表[Formula: see text]、[Formula: see text]、[Formula: see text]和[Formula: see text]频带中随机功率谱密度样本的矩阵。我们使用线性判别分析来证明,对应于不同冥想或静息状态的样本包含足够的大脑状态指纹,以允许在不同状态之间进行分离,并且我们确定了似乎有助于分离的大脑区域。我们的研究结果表明,扣带皮层、岛叶皮层和一些内部结构,特别是伏隔核、尾状核和壳核、丘脑和杏仁核,作为分离区域脱颖而出,这似乎与基于纵向研究的早期发现非常吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/13424dfc1b12/10548_2021_874_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/590bab4f4cf5/10548_2021_874_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/ca87e3561e11/10548_2021_874_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/7ac23a482cb4/10548_2021_874_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/90f204435d68/10548_2021_874_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/fc8540917952/10548_2021_874_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/b5eef3066fb6/10548_2021_874_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/9152caab72a3/10548_2021_874_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/b849d9f8e7c4/10548_2021_874_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/af63bb0a0d2d/10548_2021_874_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/5ee398edce5b/10548_2021_874_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/b720baa01637/10548_2021_874_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/13424dfc1b12/10548_2021_874_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/590bab4f4cf5/10548_2021_874_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/ca87e3561e11/10548_2021_874_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/7ac23a482cb4/10548_2021_874_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/90f204435d68/10548_2021_874_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/fc8540917952/10548_2021_874_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/b5eef3066fb6/10548_2021_874_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/9152caab72a3/10548_2021_874_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/b849d9f8e7c4/10548_2021_874_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/af63bb0a0d2d/10548_2021_874_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/5ee398edce5b/10548_2021_874_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/b720baa01637/10548_2021_874_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db1/8556220/13424dfc1b12/10548_2021_874_Fig12_HTML.jpg

相似文献

[1]
Mining the Mind: Linear Discriminant Analysis of MEG Source Reconstruction Time Series Supports Dynamic Changes in Deep Brain Regions During Meditation Sessions.

Brain Topogr. 2021-11

[2]
Mindfulness meditation styles differently modulate source-level MEG microstate dynamics and complexity.

Front Neurosci. 2024-2-2

[3]
Spectral power and functional connectivity changes during mindfulness meditation with eyes open: A magnetoencephalography (MEG) study in long-term meditators.

Int J Psychophysiol. 2015-10

[4]
Magnetoencephalographic alpha band connectivity reveals differential default mode network interactions during focused attention and open monitoring meditation.

Front Hum Neurosci. 2014-10-15

[5]
Intracerebral pain processing in a Yoga Master who claims not to feel pain during meditation.

Eur J Pain. 2005-10

[6]
Topological changes of brain network during mindfulness meditation: an exploratory source level magnetoencephalographic study.

AIMS Neurosci. 2022-5-7

[7]
Medial profrontal cortex and anterior cingulate cortex in the generation of alpha activity induced by transcendental meditation: a magnetoencephalographic study.

Acta Med Okayama. 2006-2

[8]
Controlling the Temporal Structure of Brain Oscillations by Focused Attention Meditation.

Hum Brain Mapp. 2018-1-13

[9]
Progressive increase of high-frequency EEG oscillations during meditation is associated with its trait effects on heart rate and proteomics: a study on the Tibetan Buddhist.

Cereb Cortex. 2022-9-4

[10]
Electroencephalographic correlates of states of concentrative meditation.

Int J Psychophysiol. 2016-12

引用本文的文献

[1]
Neurophysiological mechanisms of focused attention meditation: A scoping systematic review.

Imaging Neurosci (Camb). 2025-5-28

[2]
Integrative Approaches for Cancer Pain Management.

Curr Oncol Rep. 2024-6

[3]
Respiratory function in healthy long-term meditators: A cross-sectional comparative study.

Heliyon. 2023-7-22

[4]
Long-Term and Meditation-Specific Modulations of Brain Connectivity Revealed Through Multivariate Pattern Analysis.

Brain Topogr. 2023-5

[5]
The Right Hemisphere Is Responsible for the Greatest Differences in Human Brain Response to High-Arousing Emotional versus Neutral Stimuli: A MEG Study.

Brain Sci. 2021-7-21

本文引用的文献

[1]
Mindfulness related changes in grey matter: a systematic review and meta-analysis.

Brain Imaging Behav. 2021-10

[2]
NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.

Neuroimage. 2020-10-1

[3]
Spiking Neural Network Modelling Approach Reveals How Mindfulness Training Rewires the Brain.

Sci Rep. 2019-4-23

[4]
Visbrain: A Multi-Purpose GPU-Accelerated Open-Source Suite for Multimodal Brain Data Visualization.

Front Neuroinform. 2019-3-22

[5]
The neuroanatomy of long-term meditators.

Curr Opin Psychol. 2018-12-27

[6]
Rehabilitating the brain through meditation and electrical stimulation.

Cortex. 2020-1

[7]
Brief, daily meditation enhances attention, memory, mood, and emotional regulation in non-experienced meditators.

Behav Brain Res. 2019-1-1

[8]
Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting.

Brain Topogr. 2019-5

[9]
Impact of short- and long-term mindfulness meditation training on amygdala reactivity to emotional stimuli.

Neuroimage. 2018-7-7

[10]
Differences in Brain Structure and Function Among Yoga Practitioners and Controls.

Front Integr Neurosci. 2018-6-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索