Suppr超能文献

通过路易斯酸碱相互作用在共价有机硅氧烷网络薄膜中进行气相分子掺杂以增强机械性能

Vapor-Phase Molecular Doping in Covalent Organosiloxane Network Thin Films Via a Lewis Acid-Base Interaction for Enhanced Mechanical Properties.

作者信息

Qiu Mingjun, Du Weiwei, Luo Xinyu, Zhu Siyuan, Luo Yingwu, Zhao Junjie

机构信息

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, China.

出版信息

ACS Appl Mater Interfaces. 2022 May 25;14(20):22719-22727. doi: 10.1021/acsami.1c13257. Epub 2021 Oct 15.

Abstract

Incorporating inorganic components in organosiloxane polymer thin films for enhanced mechanical properties could enable better durability and longevity of functional coatings for a multitude of applications. However, molecularly dispersing the inorganic dopants while preserving the cyclosiloxane rings represents a challenge for cross-linked organosiloxane networks. Here, we report a molecular doping strategy using vapor-phase infiltration. On the basis of the proper Lewis acid-base interaction between diethyl zinc (DEZ) and cyclotrisiloxane rings, we achieved a complete infiltration of the organometallic precursors and well-distributed Zn-OH terminal groups formed in the initiated chemical vapor deposited poly(1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane) (PVD) films. X-ray photoelectron spectroscopy and nanoscale infrared spectroscopy together with density functional theory simulation reveal that the formation of a Lewis acid-base adduct rather than a ring-opening process is possibly involved in anchoring DEZ in the cross-linked network of PVD. Because of the incorporation of Zn-OH components, the organic-inorganic hybrid films obtained via our vapor-phase molecular doping exhibit a 10.2% larger elastic modulus and 67.0% higher hardness than the pristine PVD. Unveiling the reaction mechanisms between organometallic precursors and cross-linked organic networks provides new insights for expanding the vapor-phase processing strategies for engineering hybrid materials at the nanoscale.

摘要

在有机硅氧烷聚合物薄膜中引入无机成分以增强机械性能,可使功能性涂层在众多应用中具有更好的耐久性和使用寿命。然而,在保持环硅氧烷环的同时将无机掺杂剂分子分散在交联的有机硅氧烷网络中是一项挑战。在此,我们报道一种使用气相渗透的分子掺杂策略。基于二乙基锌(DEZ)与环三硅氧烷环之间适当的路易斯酸碱相互作用,我们实现了有机金属前驱体的完全渗透以及在引发化学气相沉积的聚(1,3,5-三甲基-1,3,5-三乙烯基环三硅氧烷)(PVD)薄膜中形成分布均匀的Zn-OH端基。X射线光电子能谱、纳米级红外光谱以及密度泛函理论模拟表明,在PVD的交联网络中锚定DEZ可能涉及路易斯酸碱加合物的形成而非开环过程。由于掺入了Zn-OH成分,通过我们的气相分子掺杂获得的有机-无机杂化薄膜的弹性模量比原始PVD大10.2%,硬度高67.0%。揭示有机金属前驱体与交联有机网络之间的反应机制为扩展纳米级工程杂化材料的气相加工策略提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验