Liu Ji, Glauber Jean-Pierre, Lorenz Julian, Rogalla Detlef, Harms Corinna, Devi Anjana, Nolan Michael
Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland.
Leibniz Institute for Solid State and Materials Research, Helmholtzstr. 20, Dresden 01069, Germany.
J Phys Chem C Nanomater Interfaces. 2025 Jun 6;129(24):11173-11182. doi: 10.1021/acs.jpcc.5c02303. eCollection 2025 Jun 19.
The well-known Haber-Bosch process for NH production is highly inefficient, with a significant energy demand and CO emissions. Alternative approaches, including electrochemical ammonia synthesis from N and H, are attractive, but the sluggish nitrogen reduction reaction (NRR) that arises from the high energy input to activate N remains a significant challenge for NRR electrocatalysis. The nitrogen-rich surface of transition metal nitrides (TMNs) can deliver one solution to this challenge. A Mars-van Krevelen-like mechanism is proposed that forms N vacancies via hydrogenation and ammonia release, followed by vacancy filling through N activation. We recently showed that ZrN thin films deposited with metal-organic chemical vapor deposition (MOCVD) are rapidly oxidized when exposed to ambient conditions during handling prior to analysis and showed preliminary results, from initio molecular dynamics (aiMD) simulations, indicating that surface oxidation is favorable. In this paper, we investigate in detail with aiMD the unintentional oxidation of ZrN and VN surfaces by oxygen present at ambient conditions at various temperatures: 295, 363, 873, and 1023 K. Results show that ZrN surfaces tend to form oxynitrides at lower temperatures and prefer to form a ZrO layer interfaced with ZrN at higher temperature. By contrast, VN(111) forms VO clusters on the surface, and there is no significant migration of the O species into bulk VN at all studied temperatures. We attribute the different oxidation processes of ZrN and VN to the relative strengths of V-N/O bonds and Zr-O/N bondsthe bond dissociation energy of V-N (452 kJ/mol) is larger than that of Zr-N (339 kJ/mol), while the V-O bond (645 kJ/mol) is weaker than the Zr-O bond (776 kJ/mol). Experimental results on MOCVD nitride films, including Rutherford backscattering spectrometry in combination with nuclear reaction analysis (RBS/NRA), confirm that VN is less oxidized than ZrN at ambient conditions because VN forms a less stable, potentially volatile oxide layer, whereas ZrN has a stronger tendency to form a stable, protective ZrO layer, promoting more complete oxidation at higher temperatures. This study defines a new degree of atomic-scale understanding of the formation of oxynitride or separated oxide phase in TMNs at ambient oxygen conditions relevant for NRR electrocatalysis.
著名的用于生产氨的哈伯-博施工艺效率极低,能源需求巨大且会排放一氧化碳。包括由氮气和氢气进行电化学合成氨在内的替代方法很有吸引力,但由于激活氮气需要高能量输入,导致氮还原反应(NRR)缓慢,这仍然是NRR电催化面临的重大挑战。过渡金属氮化物(TMN)富含氮的表面可以为这一挑战提供一种解决方案。我们提出了一种类似马尔斯-范克雷维伦机理,即通过氢化和氨释放形成氮空位,然后通过氮激活进行空位填充。我们最近发现,通过金属有机化学气相沉积(MOCVD)沉积的ZrN薄膜在分析前处理过程中暴露于环境条件下时会迅速氧化,并展示了来自从头算分子动力学(aiMD)模拟的初步结果,表明表面氧化是有利的。在本文中,我们利用aiMD详细研究了在295、363、873和1023K等不同温度下,环境条件下存在的氧气对ZrN和VN表面的意外氧化情况。结果表明,ZrN表面在较低温度下倾向于形成氮氧化物,而在较高温度下更倾向于形成与ZrN界面相连的ZrO层。相比之下,VN(111)在表面形成VO团簇,并且在所有研究温度下,氧物种都没有明显向VN体相迁移。我们将ZrN和VN不同的氧化过程归因于V-N/O键和Zr-O/N键的相对强度——V-N的键解离能(452kJ/mol)大于Zr-N的键解离能(339kJ/mol),而V-O键(645kJ/mol)比Zr-O键(776kJ/mol)弱。对MOCVD氮化物薄膜的实验结果,包括卢瑟福背散射光谱结合核反应分析(RBS/NRA),证实了在环境条件下VN比ZrN氧化程度更低,因为VN形成的氧化物层稳定性较差,可能具有挥发性,而ZrN更倾向于形成稳定的、保护性的ZrO层,从而在较高温度下促进更完全的氧化。这项研究为在与NRR电催化相关的环境氧气条件下,TMN中氮氧化物或分离氧化物相形成的原子尺度理解定义了一个新的程度。