Suppr超能文献

连续带电残基的核糖体延伸动力学与静电力相偶联。

Ribosome Elongation Kinetics of Consecutively Charged Residues Are Coupled to Electrostatic Force.

机构信息

Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States.

Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States.

出版信息

Biochemistry. 2021 Nov 2;60(43):3223-3235. doi: 10.1021/acs.biochem.1c00507. Epub 2021 Oct 15.

Abstract

The speed of protein synthesis can dramatically change when consecutively charged residues are incorporated into an elongating nascent protein by the ribosome. The molecular origins of this class of allosteric coupling remain unknown. We demonstrate, using multiscale simulations, that positively charged residues generate large forces that move the P-site amino acid away from the A-site amino acid. Negatively charged residues generate forces of similar magnitude but move the A- and P-sites closer together. These conformational changes, respectively, increase and decrease the transition state barrier height to peptide bond formation, explaining how charged residues mechanochemically alter translation speed. This mechanochemical mechanism is consistent with ribosome profiling data exhibiting proportionality between translation speed and the number of charged residues, experimental data characterizing nascent chain conformations, and a previously published cryo-EM structure of a ribosome-nascent chain complex containing consecutive lysines. These results expand the role of mechanochemistry in translation and provide a framework for interpreting experimental results on translation speed.

摘要

当核糖体连续将带电荷的残基掺入延伸中的新生肽链时,蛋白质的合成速度会发生显著变化。这种变构偶联的分子起源仍然未知。我们使用多尺度模拟证明,带正电荷的残基会产生很大的力,使 P 位的氨基酸远离 A 位的氨基酸。带负电荷的残基产生大小相似的力,但会使 A 位和 P 位更靠近。这些构象变化分别增加和减少了肽键形成的过渡态势垒高度,解释了带电荷的残基如何通过机械化学方式改变翻译速度。这种机械化学机制与核糖体分析数据一致,该数据表明翻译速度与带电荷残基的数量呈比例关系,实验数据也表明了新生肽链构象的特征,以及之前发表的含有连续赖氨酸的核糖体-新生肽链复合物的 cryo-EM 结构。这些结果扩展了机械化学在翻译中的作用,并为解释翻译速度的实验结果提供了框架。

相似文献

1
Ribosome Elongation Kinetics of Consecutively Charged Residues Are Coupled to Electrostatic Force.
Biochemistry. 2021 Nov 2;60(43):3223-3235. doi: 10.1021/acs.biochem.1c00507. Epub 2021 Oct 15.
2
Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis.
J Am Chem Soc. 2018 Apr 18;140(15):5077-5087. doi: 10.1021/jacs.7b11044. Epub 2018 Apr 6.
3
Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling.
J Am Chem Soc. 2020 Apr 1;142(13):6103-6110. doi: 10.1021/jacs.9b12264. Epub 2020 Mar 23.
4
Protein charge distribution in proteomes and its impact on translation.
PLoS Comput Biol. 2017 May 22;13(5):e1005549. doi: 10.1371/journal.pcbi.1005549. eCollection 2017 May.
5
Positively charged residues are the major determinants of ribosomal velocity.
PLoS Biol. 2013;11(3):e1001508. doi: 10.1371/journal.pbio.1001508. Epub 2013 Mar 12.
6
Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates.
J Mol Biol. 2020 Dec 4;432(24):166696. doi: 10.1016/j.jmb.2020.10.030. Epub 2020 Nov 3.
8
Elongation factors on the ribosome.
Curr Opin Struct Biol. 2005 Jun;15(3):349-54. doi: 10.1016/j.sbi.2005.05.004.
9
Electrostatics in the ribosomal tunnel modulate chain elongation rates.
J Mol Biol. 2008 Dec 5;384(1):73-86. doi: 10.1016/j.jmb.2008.08.089. Epub 2008 Sep 16.
10
Simulating the pulling of stalled elongated peptide from the ribosome by the translocon.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10195-200. doi: 10.1073/pnas.1307869110. Epub 2013 May 31.

引用本文的文献

1
Ribosome pausing in amylase producing Bacillus subtilis during long fermentation.
Microb Cell Fact. 2025 Jan 27;24(1):31. doi: 10.1186/s12934-025-02659-3.
2
Single-residue effects on the behavior of a nascent polypeptide chain inside the ribosome exit tunnel.
bioRxiv. 2024 Aug 20:2024.08.20.608737. doi: 10.1101/2024.08.20.608737.
3
Mechanochemical forces regulate the composition and fate of stalled nascent chains.
bioRxiv. 2024 Oct 14:2024.08.02.606406. doi: 10.1101/2024.08.02.606406.
4
The ABCF proteins in Escherichia coli individually cope with 'hard-to-translate' nascent peptide sequences.
Nucleic Acids Res. 2024 Jun 10;52(10):5825-5840. doi: 10.1093/nar/gkae309.
5
How the ribosome shapes cotranslational protein folding.
Curr Opin Struct Biol. 2024 Feb;84:102740. doi: 10.1016/j.sbi.2023.102740. Epub 2023 Dec 9.
6
Translation Rates and Protein Folding.
J Mol Biol. 2024 Jul 15;436(14):168384. doi: 10.1016/j.jmb.2023.168384. Epub 2023 Dec 6.
7
Polysome propensity and tunable thresholds in coding sequence length enable differential mRNA stability.
Sci Adv. 2023 Sep 29;9(39):eadh9545. doi: 10.1126/sciadv.adh9545. Epub 2023 Sep 27.
8
Conformational Analysis of Charged Homo-Polypeptides.
Biomolecules. 2023 Feb 15;13(2):363. doi: 10.3390/biom13020363.
10
CGG repeats trigger translational frameshifts that generate aggregation-prone chimeric proteins.
Nucleic Acids Res. 2022 Aug 26;50(15):8674-8689. doi: 10.1093/nar/gkac626.

本文引用的文献

1
A structural dissection of protein-RNA interactions based on different RNA base areas of interfaces.
RSC Adv. 2018 Mar 16;8(19):10582-10592. doi: 10.1039/c8ra00598b. eCollection 2018 Mar 13.
2
Deep conservation of ribosome stall sites across RNA processing genes.
NAR Genom Bioinform. 2021 May 25;3(2):lqab038. doi: 10.1093/nargab/lqab038. eCollection 2021 Jun.
3
Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates.
J Mol Biol. 2020 Dec 4;432(24):166696. doi: 10.1016/j.jmb.2020.10.030. Epub 2020 Nov 3.
4
Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein.
J Biol Chem. 2020 May 15;295(20):6798-6808. doi: 10.1074/jbc.RA120.012706. Epub 2020 Mar 13.
5
Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1485-1495. doi: 10.1073/pnas.1913207117. Epub 2020 Jan 7.
6
Molecular mechanism of translational stalling by inhibitory codon combinations and poly(A) tracts.
EMBO J. 2020 Feb 3;39(3):e103365. doi: 10.15252/embj.2019103365. Epub 2019 Dec 20.
7
Mechanism of ribosome stalling during translation of a poly(A) tail.
Nat Struct Mol Biol. 2019 Dec;26(12):1132-1140. doi: 10.1038/s41594-019-0331-x. Epub 2019 Nov 25.
9
Domain topology, stability, and translation speed determine mechanical force generation on the ribosome.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5523-5532. doi: 10.1073/pnas.1813003116. Epub 2019 Mar 1.
10
Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis.
J Am Chem Soc. 2018 Apr 18;140(15):5077-5087. doi: 10.1021/jacs.7b11044. Epub 2018 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验