Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States.
Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States.
Biochemistry. 2021 Nov 2;60(43):3223-3235. doi: 10.1021/acs.biochem.1c00507. Epub 2021 Oct 15.
The speed of protein synthesis can dramatically change when consecutively charged residues are incorporated into an elongating nascent protein by the ribosome. The molecular origins of this class of allosteric coupling remain unknown. We demonstrate, using multiscale simulations, that positively charged residues generate large forces that move the P-site amino acid away from the A-site amino acid. Negatively charged residues generate forces of similar magnitude but move the A- and P-sites closer together. These conformational changes, respectively, increase and decrease the transition state barrier height to peptide bond formation, explaining how charged residues mechanochemically alter translation speed. This mechanochemical mechanism is consistent with ribosome profiling data exhibiting proportionality between translation speed and the number of charged residues, experimental data characterizing nascent chain conformations, and a previously published cryo-EM structure of a ribosome-nascent chain complex containing consecutive lysines. These results expand the role of mechanochemistry in translation and provide a framework for interpreting experimental results on translation speed.
当核糖体连续将带电荷的残基掺入延伸中的新生肽链时,蛋白质的合成速度会发生显著变化。这种变构偶联的分子起源仍然未知。我们使用多尺度模拟证明,带正电荷的残基会产生很大的力,使 P 位的氨基酸远离 A 位的氨基酸。带负电荷的残基产生大小相似的力,但会使 A 位和 P 位更靠近。这些构象变化分别增加和减少了肽键形成的过渡态势垒高度,解释了带电荷的残基如何通过机械化学方式改变翻译速度。这种机械化学机制与核糖体分析数据一致,该数据表明翻译速度与带电荷残基的数量呈比例关系,实验数据也表明了新生肽链构象的特征,以及之前发表的含有连续赖氨酸的核糖体-新生肽链复合物的 cryo-EM 结构。这些结果扩展了机械化学在翻译中的作用,并为解释翻译速度的实验结果提供了框架。