State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
ACS Nano. 2021 Oct 26;15(10):16286-16297. doi: 10.1021/acsnano.1c05451. Epub 2021 Oct 15.
Nanocatalytic medicine is one of the most recent advances in the development of nanomedicine, which catalyzes intratumoral chemical reactions to produce toxins such as reactive oxygen species for cancer specific treatment by using exogenous-delivered catalysts such as Fenton agents. However, the overexpression of reductive glutathione and Cu-Zn superoxide dismutase in cancer cells will significantly counteract the therapeutic efficacy by reactive oxygen species-mediated oxidative damages. Additionally, the direct delivery of iron-based Fenton agents may arouse undesired detrimental effects such as anaphylactic reactions. In this study, instead of exogenously delivering Fenton agents, the endogenous copper ions from intracellular Cu-Zn superoxide dismutase have been employed as the source of Fenton-like agents by chelating the Cu ions from the superoxide dismutase using a common metal ion chelator, ,,',-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN), followed by the TPEN-Cu(II) chelate reduction to TPEN-Cu(I) by reductive glutathione. Briefly, TPEN was loaded in a disulfide bond-containing link poly(acrylic acid) shell-coated hybrid mesoporous silica/organosilicate (MSN@MON) nanocomposite as a reductive glutathione-responsive nanoplatform, which features inter-related triple functions: intratumoral reductive glutathione-responsive link poly(acrylic acid) disruption and TPEN release; the accompanying reductive glutathione consumption and Cu-Zn superoxide dismutase deactivation by TPEN chelating Cu ions from this superoxide dismutase; and the Fenton reaction catalyzed by TPEN-Cu(I) chelate as a Fenton-like agent generated from TPEN-Cu(II) reduction by the remaining reductive glutathione in cancer cells, thereby cutting off the self-protection pathway of cancer cells under severe oxidation stress and ensuring cancer cell apoptosis by reactive oxygen species produced by the catalytic Fenton-like reactions. Such a nanocatalyst demonstrates excellent biosafety and augmented therapeutic efficacy by simultaneous nanocatalytic oxidative damage and intrinsic protection pathway breakage of cancer cells.
纳米催化医学是纳米医学发展的最新进展之一,它利用外源性递送来的催化剂(如 Fenton 试剂),催化肿瘤内的化学反应,产生活性氧等毒素,从而实现癌症的特异性治疗。然而,癌细胞中还原性谷胱甘肽和 Cu-Zn 超氧化物歧化酶的过度表达会显著抵消活性氧介导的氧化损伤的治疗效果。此外,铁基 Fenton 试剂的直接递送可能会引起如过敏反应等不良的副作用。在本研究中,我们没有外源性递 Fenton 试剂,而是利用细胞内 Cu-Zn 超氧化物歧化酶中的内源性铜离子作为 Fenton 样试剂的来源,通过使用一种常见的金属离子螯合剂,2,2,6,6-四甲基哌啶-1-氧基(TEMPO),螯合超氧化物歧化酶中的铜离子,随后通过还原性谷胱甘肽将 TEMPO-Cu(II) 螯合物还原为 TEMPO-Cu(I)。简而言之,TEMPO 被装载在含有二硫键的聚(丙烯酸)壳包裹的杂化介孔硅/有机硅(MSN@MON)纳米复合材料中,作为一种还原性谷胱甘肽响应性纳米平台,具有相互关联的三重功能:肿瘤内还原性谷胱甘肽响应性聚(丙烯酸)键的破坏和 TEMPO 的释放;同时伴随 TEMPO 螯合超氧化物歧化酶中的铜离子,消耗还原性谷胱甘肽并使超氧化物歧化酶失活;以及 TEMPO-Cu(I) 螯合物催化的 Fenton 反应,该反应由细胞内剩余的还原性谷胱甘肽将 TEMPO-Cu(II) 还原生成 Fenton 样试剂,从而切断癌细胞在严重氧化应激下的自我保护途径,并通过催化 Fenton 样反应产生的活性氧诱导癌细胞凋亡。这种纳米催化剂通过同时进行纳米催化氧化损伤和癌细胞内在保护途径的破坏,表现出优异的生物安全性和增强的治疗效果。
Arch Biochem Biophys. 1992-2-14
Biol Trace Elem Res. 1997-12
ACS Biomater Sci Eng. 2021-4-12
Toxicology. 2011-3-23
ACS Appl Mater Interfaces. 2023-12-27
Int J Mol Sci. 2025-6-18
Int J Nanomedicine. 2025-5-13
Discov Oncol. 2025-4-21
Mater Today Bio. 2024-11-23
Int J Mol Sci. 2024-7-28