Zeng Ying, Hu Chun-Li, Xu Wei-Jian, Zeng Teng-Wu, Zhu Zhao-Xiang, Chen Xiao-Xian, Liu De-Xuan, Chen Yu-Jie, Zhang Yue-Biao, Zhang Wei-Xiong, Chen Xiao-Ming
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Angew Chem Int Ed Engl. 2022 Jan 10;61(2):e202110082. doi: 10.1002/anie.202110082. Epub 2021 Nov 25.
Switching materials in channels of nonlinear optics (NLOs) are of particular interest in NLO material science. Numerous crystalline NLO switches based on structural phase transition have emerged, but most of them reveal a single-step switch between two different second-harmonic-generation (SHG) states, and only very rare cases involve three or more SHG states. Herein, we report a new organic-inorganic hybrid salt, (Me NNH ) [CdI ], which is an unprecedented case of a reversible three-step NLO switch between SHG-silent, -medium, -low, and -high states, with high contrasts of 25.5/4.3/9.2 in a temperature range of 213-303 K. By using the combined techniques of variable-temperature X-ray single-crystal structural analyses, dielectric constants, solid-state C nuclear magnetic resonance spectroscopy, and Hirshfeld surface analyses, we disclose that this four-state switchable SHG behavior is highly associated with the stepwise-changed molecular dynamics of the polar organic cations. This finding demonstrates well the complexity of molecular dynamics in simple hybrid salts and their potential in designing new advanced multistep switching materials.
在非线性光学(NLO)材料科学中,切换非线性光学器件通道中的材料备受关注。基于结构相变的众多晶体NLO开关已出现,但其中大多数仅在两种不同的二次谐波产生(SHG)状态之间呈现单步切换,只有极少数情况涉及三种或更多的SHG状态。在此,我们报道了一种新型有机 - 无机杂化盐(Me₄NNH₂)[CdI₄],它是一种前所未有的情况,即在213 - 303 K温度范围内,在SHG沉默、中等、低和高状态之间实现可逆的三步NLO切换,对比度高达25.5/4.3/9.2。通过结合变温X射线单晶结构分析、介电常数、固态¹³C核磁共振光谱和 Hirshfeld 表面分析等技术,我们揭示了这种四态可切换的SHG行为与极性有机阳离子逐步变化的分子动力学高度相关。这一发现很好地证明了简单杂化盐中分子动力学的复杂性及其在设计新型先进多步切换材料方面的潜力。