文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人参皂苷作为双功能药物和纳米载体增强抗肿瘤治疗。

Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies.

机构信息

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.

出版信息

J Nanobiotechnology. 2021 Oct 15;19(1):322. doi: 10.1186/s12951-021-01062-5.


DOI:10.1186/s12951-021-01062-5
PMID:34654430
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8518152/
Abstract

Ginsenosides, the main components isolated from Panax ginseng, can play a therapeutic role by inducing tumor cell apoptosis and reducing proliferation, invasion, metastasis; by enhancing immune regulation; and by reversing tumor cell multidrug resistance. However, clinical applications have been limited because of ginsenosides' physical and chemical properties such as low solubility and poor stability, as well as their short half-life, easy elimination, degradation, and other pharmacokinetic properties in vivo. In recent years, developing a ginsenoside delivery system for bifunctional drugs or carriers has attracted much attention from researchers. To create a precise treatment strategy for cancer, a variety of nano delivery systems and preparation technologies based on ginsenosides have been conducted (e.g., polymer nanoparticles [NPs], liposomes, micelles, microemulsions, protein NPs, metals and inorganic NPs, biomimetic NPs). It is desirable to design a targeted delivery system to achieve antitumor efficacy that can not only cross various barriers but also can enhance immune regulation, eventually converting to a clinical application. Therefore, this review focused on the latest research about delivery systems encapsulated or modified with ginsenosides, and unification of medicines and excipients based on ginsenosides for improving drug bioavailability and targeting ability. In addition, challenges and new treatment methods were discussed to support the development of these new tumor therapeutic agents for use in clinical treatment.

摘要

人参中的主要成分——人参皂苷,可以通过诱导肿瘤细胞凋亡和减少增殖、侵袭和转移;增强免疫调节;以及逆转肿瘤细胞多药耐药性来发挥治疗作用。然而,由于人参皂苷的物理化学性质,如低溶解度和较差的稳定性,以及其在体内的半衰期短、易消除、降解和其他药代动力学特性,其临床应用受到了限制。近年来,开发用于双功能药物或载体的人参皂苷传递系统引起了研究人员的广泛关注。为了为癌症制定精确的治疗策略,已经进行了各种基于人参皂苷的纳米传递系统和制备技术(例如聚合物纳米颗粒[NP]、脂质体、胶束、微乳液、蛋白 NP、金属和无机 NP、仿生 NP)。理想情况下,设计一种靶向传递系统来实现抗肿瘤功效,该系统不仅可以跨越各种障碍,还可以增强免疫调节,最终转化为临床应用。因此,本综述重点介绍了最新的关于包裹或修饰有人参皂苷的传递系统的研究,以及基于人参皂苷的药物和赋形剂的统一,以提高药物的生物利用度和靶向能力。此外,还讨论了挑战和新的治疗方法,以支持这些新型肿瘤治疗剂的开发,用于临床治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/a7c4b9e86458/12951_2021_1062_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/5f5765c92f65/12951_2021_1062_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/f8d7121cc0a5/12951_2021_1062_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/1e253d9ddd26/12951_2021_1062_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/fbd4b7a83b2d/12951_2021_1062_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/010d4c413364/12951_2021_1062_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/5d658f94330b/12951_2021_1062_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/c1e2e313625e/12951_2021_1062_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/bb9f5471b31d/12951_2021_1062_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/869f0923289e/12951_2021_1062_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/b64fa2fbe598/12951_2021_1062_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/6978f2d45abb/12951_2021_1062_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/04f837688d17/12951_2021_1062_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/179e93a8fc99/12951_2021_1062_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/a7c4b9e86458/12951_2021_1062_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/5f5765c92f65/12951_2021_1062_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/f8d7121cc0a5/12951_2021_1062_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/1e253d9ddd26/12951_2021_1062_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/fbd4b7a83b2d/12951_2021_1062_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/010d4c413364/12951_2021_1062_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/5d658f94330b/12951_2021_1062_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/c1e2e313625e/12951_2021_1062_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/bb9f5471b31d/12951_2021_1062_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/869f0923289e/12951_2021_1062_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/b64fa2fbe598/12951_2021_1062_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/6978f2d45abb/12951_2021_1062_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/04f837688d17/12951_2021_1062_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/179e93a8fc99/12951_2021_1062_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5f/8518152/a7c4b9e86458/12951_2021_1062_Fig14_HTML.jpg

相似文献

[1]
Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies.

J Nanobiotechnology. 2021-10-15

[2]
Recent advances in nano and micro formulations of Ginsenoside to enhance their therapeutic efficacy.

Phytomedicine. 2024-11

[3]
Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer.

Theranostics. 2019-6-9

[4]
Preparation of ginsenoside compound-K mixed micelles with improved retention and antitumor efficacy.

Int J Nanomedicine. 2018-7-3

[5]
Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment.

Int J Nanomedicine. 2018-8-31

[6]
[Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship].

Yao Xue Xue Bao. 2012-7

[7]
Assessment of a New Ginsenoside Rh2 Nanoniosomal Formulation for Enhanced Antitumor Efficacy on Prostate Cancer: An in vitro Study.

Drug Des Devel Ther. 2020-8-13

[8]
Synthesis of nanomedicines by nanohybrids conjugating ginsenosides with auto-targeting and enhanced MRI contrast for liver cancer therapy.

Drug Dev Ind Pharm. 2018-3-20

[9]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[10]
Anticancer property of ginsenoside Rh2 from ginseng.

Eur J Med Chem. 2020-10-1

引用本文的文献

[1]
Ginseng Nanosizing: The Second Spring of Ginseng Therapeutic Applications.

Antioxidants (Basel). 2025-8-5

[2]
Unlocking ginsenosides' therapeutic power with polymer-based delivery systems: current applications and future perspectives.

Front Pharmacol. 2025-7-10

[3]
Ginseng-Based Nanotherapeutics in Cancer Treatment: State-of-the-Art Progress, Tackling Gaps, and Translational Achievements.

Curr Issues Mol Biol. 2025-4-3

[4]
Celastrol-loaded ginsenoside Rg3 liposomes boost immunotherapy by remodeling obesity-related immunosuppressive tumor microenvironment in melanoma.

Acta Pharm Sin B. 2025-5

[5]
Anti-Colorectal Cancer Activity of and Its Active Components, Ginsenosides: A Review.

Int J Mol Sci. 2025-3-13

[6]
Harnessing the Power of Traditional Chinese Medicine in Cancer Treatment: The Role of Nanocarriers.

Int J Nanomedicine. 2025-3-13

[7]
A ROS-Responsive Lipid Nanoparticles Release Multifunctional Hydrogel Based on Microenvironment Regulation Promotes Infected Diabetic Wound Healing.

Adv Sci (Weinh). 2024-11

[8]
Phytochemicals regulate cancer metabolism through modulation of the AMPK/PGC-1α signaling pathway.

BMC Cancer. 2024-9-2

[9]
Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells.

Acta Pharm Sin B. 2024-8

[10]
Monocyte/Macrophage-Mediated Transport of Dual-Drug ZIF Nanoplatforms Synergized with Programmed Cell Death Protein-1 Inhibitor Against Microsatellite-Stable Colorectal Cancer.

Adv Sci (Weinh). 2024-10

本文引用的文献

[1]
Injectable microfluidic hydrogel microspheres based on chitosan and poly(ethylene glycol) diacrylate (PEGDA) as chondrocyte carriers.

RSC Adv. 2020-10-29

[2]
One Stone Four Birds: A Novel Liposomal Delivery System Multi-functionalized with Ginsenoside Rh2 for Tumor Targeting Therapy.

Nanomicro Lett. 2020-6-16

[3]
Modeling pancreatic cancer in mice for experimental therapeutics.

Biochim Biophys Acta Rev Cancer. 2021-8

[4]
Dual-Stimuli Responsive Polymeric Micelles for the Effective Treatment of Rheumatoid Arthritis.

ACS Appl Mater Interfaces. 2021-5-12

[5]
Ginsenoside Rg5 inhibits cancer cell migration by inhibiting the nuclear factor-κB and erythropoietin-producing hepatocellular receptor A2 signaling pathways.

Oncol Lett. 2021-6

[6]
Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer.

Pharmaceutics. 2021-2-24

[7]
Nanosystem functionalization strategies for prostate cancer treatment: a review.

J Drug Target. 2021-9

[8]
Nanobiomaterial-based vaccination immunotherapy of cancer.

Biomaterials. 2021-3

[9]
Exploiting gold nanoparticles for diagnosis and cancer treatments.

Nanotechnology. 2021-5-7

[10]
Identification and construction of a novel biomimetic delivery system of paclitaxel and its targeting therapy for cancer.

Signal Transduct Target Ther. 2021-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索