文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

受损大脑通过释放靶向成骨前体细胞的小型细胞外囊泡来加速骨愈合。

Damaged brain accelerates bone healing by releasing small extracellular vesicles that target osteoprogenitors.

机构信息

Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China.

出版信息

Nat Commun. 2021 Oct 15;12(1):6043. doi: 10.1038/s41467-021-26302-y.


DOI:10.1038/s41467-021-26302-y
PMID:34654817
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8519911/
Abstract

Clinical evidence has established that concomitant traumatic brain injury (TBI) accelerates bone healing, but the underlying mechanism is unclear. This study shows that after TBI, injured neurons, mainly those in the hippocampus, release osteogenic microRNA (miRNA)-enriched small extracellular vesicles (sEVs), which targeted osteoprogenitors in bone to stimulate bone formation. We show that miR-328a-3p and miR-150-5p, enriched in the sEVs after TBI, promote osteogenesis by directly targeting the 3'UTR of FOXO4 or CBL, respectively, and hydrogel carrying miR-328a-3p-containing sEVs efficiently repaires bone defects in rats. Importantly, increased fibronectin expression on sEVs surface contributes to targeting of osteoprogenitors in bone by TBI sEVs, thereby implying that modification of the sEVs surface fibronectin could be used in bone-targeted drug delivery. Together, our work unveils a role of central regulation in bone formation and a clear link between injured neurons and osteogenitors, both in animals and clinical settings.

摘要

临床证据已经确立,伴随的创伤性脑损伤(TBI)会加速骨愈合,但潜在机制尚不清楚。本研究表明,TBI 后,受伤的神经元,主要是海马体中的神经元,会释放富含成骨 microRNA(miRNA)的小细胞外囊泡(sEVs),这些囊泡靶向骨中的成骨前体细胞,刺激骨形成。我们发现,TBI 后 sEVs 中富含的 miR-328a-3p 和 miR-150-5p 通过分别直接靶向 FOXO4 或 CBL 的 3'UTR 促进成骨,并且携带 miR-328a-3p 的 sEVs 的水凝胶在大鼠中有效地修复了骨缺损。重要的是,sEVs 表面纤维连接蛋白表达的增加有助于 TBI sEVs 对骨中成骨前体细胞的靶向,这意味着可以对 sEVs 表面纤维连接蛋白进行修饰,用于骨靶向药物传递。总之,我们的工作揭示了中枢调节在骨形成中的作用,以及动物和临床环境中受伤神经元和成骨细胞之间的明确联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/5234180f485e/41467_2021_26302_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/320c099de927/41467_2021_26302_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/d0f43019b9b2/41467_2021_26302_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/aa71c3573abf/41467_2021_26302_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/1397925f6fd4/41467_2021_26302_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/377be4632b0c/41467_2021_26302_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/dbc5187158ca/41467_2021_26302_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/ac10feae5920/41467_2021_26302_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/5234180f485e/41467_2021_26302_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/320c099de927/41467_2021_26302_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/d0f43019b9b2/41467_2021_26302_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/aa71c3573abf/41467_2021_26302_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/1397925f6fd4/41467_2021_26302_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/377be4632b0c/41467_2021_26302_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/dbc5187158ca/41467_2021_26302_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/ac10feae5920/41467_2021_26302_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/8519911/5234180f485e/41467_2021_26302_Fig8_HTML.jpg

相似文献

[1]
Damaged brain accelerates bone healing by releasing small extracellular vesicles that target osteoprogenitors.

Nat Commun. 2021-10-15

[2]
Isolation and characterization of bone mesenchymal cell small extracellular vesicles using a novel mouse model.

J Bone Miner Res. 2024-10-29

[3]
MiR-145 encapsulated small extracellular vesicles inhibit colorectal cancer progression by downregulating fascin actin-bundling protein 1 expression.

Stem Cell Res Ther. 2025-7-1

[4]
Engineered small extracellular vesicles for targeted delivery of perlecan to stabilise the blood-spinal cord barrier after spinal cord injury.

Clin Transl Med. 2025-6

[5]
Single vesicle analysis reveals the release of tetraspanin positive extracellular vesicles into circulation with high intensity intermittent exercise.

J Physiol. 2023-11

[6]
Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model.

Clin Orthop Relat Res. 2024-7-1

[7]
Plasma exosomes carrying mmu-miR-146a-5p and Notch signalling pathway-mediated synaptic activity in schizophrenia.

J Psychiatry Neurosci. 2024

[8]
Technological aids for the rehabilitation of memory and executive functioning in children and adolescents with acquired brain injury.

Cochrane Database Syst Rev. 2016-7-1

[9]
MiR-125a-5p in extracellular vesicles of neural stem cells acts as a crosstalk signal modulating neuroinflammatory microenvironment to alleviate cerebral ischemia-reperfusion injury.

Theranostics. 2025-6-12

[10]
MiR-370-3p regulate TLR4/SLC7A11/GPX4 to alleviate the progression of glucocorticoids-induced osteonecrosis of the femoral head by promoting osteogenesis and suppressing ferroptosis.

J Orthop Translat. 2025-2-12

引用本文的文献

[1]
Traumatic Brain Injury Induces Early Barrier Protective Responses in Incisional Skin Wounds Accelerating Cutaneous Wound Healing.

Wound Repair Regen. 2025

[2]
Bone marrow mesenchymal stem cell-derived exosomal METTL14 promotes the osteogenic differentiation of MC3T3-E1 cells by regulating BMP2 in bone fracture recovery.

Hum Cell. 2025-8-12

[3]
The effect of peripheral dopamine on fracture healing: an experimental study in a rat model.

J Orthop Surg Res. 2025-7-25

[4]
Metabotissugenic citrate biomaterials orchestrate bone regeneration via citrate-mediated signaling pathways.

Sci Adv. 2025-7-25

[5]
Bidirectional Interaction Between the Brain and Bone in Traumatic Brain Injury.

Adv Sci (Weinh). 2025-8

[6]
Prevalence, risk factors, prediction of robust callus formation and accelerated fracture healing in traumatic brain injury patients: a five-year study.

J Orthop Translat. 2025-6-23

[7]
Association of organs-crosstalk with the pathogenesis of osteoarthritis: cartilage as a key player.

Front Endocrinol (Lausanne). 2025-6-5

[8]
Effects of traumatic brain injury on vascular response and fracture healing: an experimental study in a rat model.

Acta Orthop Traumatol Turc. 2025-5-28

[9]
IFI204 in microglia mediates traumatic brain injury-induced mitochondrial dysfunction and pyroptosis via SENP7 interaction.

Cell Biol Toxicol. 2025-5-23

[10]
[Isolation and proteomics analysis of cerebrospinal fluid exosome subtypes].

Se Pu. 2025-5

本文引用的文献

[1]
Macrophage GIT1 Contributes to Bone Regeneration by Regulating Inflammatory Responses in an ERK/NRF2-Dependent Way.

J Bone Miner Res. 2020-10

[2]
Protein kinase G1 regulates bone regeneration and rescues diabetic fracture healing.

JCI Insight. 2020-5-7

[3]
Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway.

Theranostics. 2020

[4]
Extracellular Vesicles and Neurodegenerative Diseases.

J Neurosci. 2019-11-20

[5]
Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration.

Nanoscale. 2019-10-29

[6]
Mediation of the Acute Stress Response by the Skeleton.

Cell Metab. 2019-9-12

[7]
The Therapeutic Potential of MicroRNAs as Orthobiologics for Skeletal Fractures.

J Bone Miner Res. 2019-5

[8]
Exosomes-the enigmatic regulators of bone homeostasis.

Bone Res. 2018-12-7

[9]
Brain to bone: What is the contribution of the brain to skeletal homeostasis?

Bone. 2018-5-16

[10]
An In Vitro Model of Traumatic Brain Injury.

Methods Mol Biol. 2018

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索