Suppr超能文献

基于 EEG 信号和 CNN-LSTM-ATTN 网络的酒精中毒检测。

Detection of alcoholism using EEG signals and a CNN-LSTM-ATTN network.

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology Patna, India.

Department of Electrical Engineering, Indian Institute of Technology Patna, India.

出版信息

Comput Biol Med. 2021 Nov;138:104940. doi: 10.1016/j.compbiomed.2021.104940. Epub 2021 Oct 13.

Abstract

Alcoholism is a serious disorder that poses a problem for modern society, but the detection of alcoholism has no widely accepted standard tests or procedures. If alcoholism goes undetected at its early stages, it can create havoc in the patient's life. An electroencephalography (EEG) is a method used to measure the brain's electrical activity and can detect alcoholism. EEG signals are complex and multi-channel and thus can be difficult to interpret manually. Several previous works have tried to classify a subject as alcoholic or control (non-alcoholic) based on EEG signals. Such works have mainly used machine learning or statistical techniques along with handcrafted features such as entropy, correlation dimension, Hurst exponent. With the growth in computational power and data volume worldwide, deep learning models have recently been gaining momentum in various fields. However, only a few studies are available on the application of deep learning models for the classification of alcoholism using EEG signals. This paper proposes a deep learning architecture that uses a combination of fast Fourier transform (FFT), a convolution neural network (CNN), long short-term memory (LSTM), and a recently proposed attention mechanism for extracting Spatio-temporal features from multi-channel EEG signals. The proposed architecture can classify a subject as an alcoholic or control with a high degree of accuracy by analyzing EEG signals of that subject and can be used for automating alcoholism detection. The analytical results using the proposed architecture show a 98.83% accuracy, making it better than most state-of-the-art algorithms.

摘要

酗酒是一种严重的失调症,给现代社会带来了问题,但目前还没有被广泛接受的用于检测酗酒的标准测试或程序。如果在早期阶段没有发现酗酒,它可能会给患者的生活带来严重破坏。脑电图(EEG)是一种用于测量大脑电活动的方法,可以检测酗酒。EEG 信号复杂且多通道,因此手动解释可能很困难。以前的几项工作都试图根据 EEG 信号将对象分类为酗酒者或对照(非酗酒者)。这些工作主要使用机器学习或统计技术以及手工制作的特征,如熵、关联维数、赫斯特指数。随着全球计算能力和数据量的增长,深度学习模型在各个领域最近得到了迅速发展。然而,关于使用 EEG 信号对酗酒进行分类的深度学习模型的应用,只有少数研究。本文提出了一种深度学习架构,该架构使用快速傅里叶变换(FFT)、卷积神经网络(CNN)、长短期记忆(LSTM)和最近提出的注意力机制的组合,从多通道 EEG 信号中提取时空特征。通过分析该对象的 EEG 信号,该提出的架构可以高度准确地将对象分类为酗酒者或对照者,并可用于自动化酗酒检测。使用所提出的架构进行的分析结果显示出 98.83%的准确率,优于大多数最先进的算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验