Department of Computer Engineering, Fırat University, Elazığ, Turkey.
Department of Computer Engineering, Munzur University, Tunceli, Turkey.
J Med Syst. 2019 May 28;43(7):205. doi: 10.1007/s10916-019-1345-y.
Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.
抑郁症影响着当今世界上大量的人,被认为是一个全球性的问题。它是一种可以通过脑电图(EEG)信号检测到的情绪障碍。通过分析 EEG 信号手动检测抑郁症需要丰富的经验,既繁琐又耗时。因此,开发一个使用 EEG 信号的全自动抑郁症诊断系统将有助于临床医生。因此,我们提出了一种使用卷积神经网络(CNN)和长短时记忆(LSTM)架构开发的深度混合模型,用于使用 EEG 信号检测抑郁症。在这个深度模型中,CNN 层学习信号的时间特性,而 LSTM 层提供序列学习过程。在这项工作中,我们使用了从大脑左右半球获得的 EEG 信号。我们的工作分别为右半球和左半球 EEG 信号提供了 99.12%和 97.66%的分类准确率。因此,我们可以得出结论,开发的 CNN-LSTM 模型使用 EEG 信号检测抑郁症既准确又快速。它可以被应用于医院的精神科病房,以准确地使用 EEG 信号检测抑郁症,从而帮助精神科医生。