Suppr超能文献

研究了用于生物医学应用的多道次 FSP 制备的镁基纳米复合材料的微观结构、晶体织构和力学性能。

Investigation of microstructure, crystallographic texture, and mechanical behavior of magnesium-based nanocomposite fabricated via multi-pass FSP for biomedical applications.

机构信息

Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave, Babol, 47148-71167, Iran.

Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave, Babol, 47148-71167, Iran.

出版信息

J Mech Behav Biomed Mater. 2022 Jan;125:104894. doi: 10.1016/j.jmbbm.2021.104894. Epub 2021 Oct 13.

Abstract

In this work, the microstructure, crystallographic texture, hardness, and tensile behavior of AZ91/HA bio-nano composite manufactured by multi-pass friction stir processing (FSP) were investigated. With increasing the number of FSP passes, the average size of grains is reduced. The processed AZ91 and AZ91/HA nanocomposite after the third pass had the lowest grain size (4.5 and 2.6 μm, respectively). Also, the average grain size of composites was smaller than that of monolithic samples at the same pass number. The results showed that particle distribution in the AZ91/HA nanocomposite is significantly affected by the number of passes. The increment of the pass number led to a more uniform dispersion of HA nanoparticles in the matrix due to more plastic flow of materials. With increasing the pass number to three, the accumulated strain increased to 0.726 (monolithic) and 0.623 (composite) due to repeating mechanical stirring. There was a texture transition ({101‾1} to {0002}) via performing only one pass of FSP. Suppression of grain rotation by HA nanoparticles maintained the intensity of {101‾1} texture as a corrosion-resistant orientation after the third pass. With increasing the pass number of FSP, the hardness and strength of samples increased due to the grain size reduction and the more uniform dispersion of HA powder. The composite sample after the third pass exhibited the highest hardness of 117.0 HV and ultimate tensile strength of 306.6 MPa. The failure mode of processed samples was ductile. There were smaller dimples on the fracture surface of the composite samples due to their lower grain size and also the presence of HA nanoparticles. Considering the obtained results, the nanocomposite after the third pass can be a good load-bearing implant for biomedical applications.

摘要

本工作研究了多道次搅拌摩擦加工(FSP)制备的 AZ91/HA 生物纳米复合材料的微观组织、晶体织构、硬度和拉伸性能。随着 FSP 道次的增加,晶粒平均尺寸减小。经过第三道次加工的 AZ91 和 AZ91/HA 纳米复合材料具有最低的晶粒尺寸(分别为 4.5μm 和 2.6μm)。此外,在相同的道次数下,复合材料的平均晶粒尺寸小于单相样品。结果表明,颗粒在 AZ91/HA 纳米复合材料中的分布受道次数的显著影响。由于材料的塑性流动增加,道次数的增加导致 HA 纳米颗粒在基体中的分散更加均匀。随着道次数增加到 3 次,由于重复的机械搅拌,累积应变增加到 0.726(单相)和 0.623(复合材料)。通过仅进行一次 FSP 道次就发生了织构转变({101‾1}到{0002})。由于 HA 纳米颗粒抑制晶粒旋转,在经过第三道次后保持了{101‾1}织构作为耐腐蚀取向的强度。随着 FSP 道次数的增加,由于晶粒尺寸减小和 HA 粉末更均匀的分散,样品的硬度和强度增加。经过第三道次加工的复合材料样品表现出最高的硬度 117.0HV 和最大拉伸强度 306.6MPa。加工样品的失效模式为韧性。由于晶粒尺寸较小,以及存在 HA 纳米颗粒,复合材料样品的断口表面上存在较小的凹坑。考虑到所得到的结果,经过第三道次加工的纳米复合材料可以成为用于生物医学应用的良好承载植入物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验