INSERM U1246, SPHERE University of Nantes, University of Tours, Nantes, France.
Addictive Medicine and Psychiatry Department, CHU Nantes, Nantes, France.
Qual Life Res. 2022 Jan;31(1):61-73. doi: 10.1007/s11136-021-03015-9. Epub 2021 Oct 17.
Methods for response shift (RS) detection at the individual level could be of great interest when analyzing changes in patient-reported outcome data. Guttman errors (GEs), which measure discrepancies in respondents' answers compared to the average sample responses, might be useful for detecting RS at the individual level between two time points, as RS may induce an increase in the number of discrepancies over time. This study aims to establish the link between recalibration RS and the change in the number of GEs over time (denoted index [Formula: see text]) via simulations and explores the discriminating ability of this index.
We simulated the responses of individuals affected or not affected by recalibration RS (defined as changes in the patients' standard of measurement) to determine whether simulated individuals with recalibration had a greater change in the number of GEs over time than individuals without recalibration. The effects of factors related to the sample, the questionnaire structure and recalibration were investigated. As an illustrative example, the change in the number of GEs was computed in patients suffering from eating disorders.
Within simulations, simulated individuals affected by recalibration had, on average, a greater change in the number of GEs over time than did individuals without RS. Some of the parameters related to the questionnaire structure and recalibration magnitude appeared to have substantial effects on the values of [Formula: see text]. Discriminating abilities appeared, however, globally low.
Some evidence of the link between recalibration and the change in GEs was found in this study. GEs could be a valuable nonparametric tool for RS detection at a more individual level, but further investigation is needed.
在分析患者报告结局数据的变化时,个体水平上的反应转移(RS)检测方法可能非常有意义。与平均样本反应相比,衡量受访者答案差异的古特曼误差(GE),可能有助于在两个时间点之间检测个体水平上的 RS,因为 RS 可能随时间增加差异的数量。本研究旨在通过模拟建立再校准 RS 与随时间变化的 GEs 数量变化之间的联系(表示为指数 [Formula: see text]),并探讨该指数的区分能力。
我们模拟了受或不受再校准 RS(定义为患者测量标准的变化)影响的个体的反应,以确定具有再校准的模拟个体是否随时间的推移,比没有再校准的个体在 GEs 数量上有更大的变化。研究了与样本、问卷结构和再校准相关的因素的影响。作为一个说明性的例子,计算了患有进食障碍的患者的 GEs 数量的变化。
在模拟中,受再校准影响的模拟个体随时间的 GEs 数量变化平均值大于没有 RS 的个体。与问卷结构和再校准幅度相关的一些参数似乎对 [Formula: see text] 的值有很大影响。然而,区分能力总体上较低。
本研究发现了再校准与 GEs 变化之间的一些联系的证据。GEs 可能是一种有价值的、用于更个体水平上的 RS 检测的非参数工具,但需要进一步的研究。