Tilburg University.
Erasmus University Rotterdam.
Multivariate Behav Res. 2023 Mar-Apr;58(2):262-291. doi: 10.1080/00273171.2021.1967715. Epub 2021 Oct 16.
Invariance of the measurement model (MM) between subjects and within subjects over time is a prerequisite for drawing valid inferences when studying dynamics of psychological factors in intensive longitudinal data. To conveniently evaluate this invariance, latent Markov factor analysis (LMFA) was proposed. LMFA combines a latent Markov model with mixture factor analysis: The Markov model captures changes in MMs over time by clustering subjects' observations into a few states and state-specific factor analyses reveal what the MMs look like. However, to estimate the model, Vogelsmeier, Vermunt, van Roekel, and De Roover (2019) introduced a one-step (full information maximum likelihood; FIML) approach that is counterintuitive for applied researchers and entails cumbersome model selection procedures in the presence of many covariates. In this paper, we simplify the complex LMFA estimation and facilitate the exploration of covariate effects on state memberships by splitting the estimation in three intuitive steps: (1) obtain states with mixture factor analysis while treating repeated measures as independent, (2) assign observations to the states, and (3) use these states in a discrete- or continuous-time latent Markov model taking into account classification errors. A real data example demonstrates the empirical value.
在对密集纵向数据中的心理因素动态进行研究时,主体间和主体内的测量模型 (MM) 随时间的不变性是进行有效推断的前提条件。为了方便地评估这种不变性,提出了潜在马尔可夫因子分析 (LMFA)。LMFA 将潜在马尔可夫模型与混合因子分析相结合:马尔可夫模型通过将主体的观测值聚类到几个状态来捕捉 MM 随时间的变化,而状态特定的因子分析揭示了 MM 的样子。然而,为了估计模型,Vogelsmeier、Vermunt、van Roekel 和 De Roover(2019)引入了一种一步(完全信息极大似然;FIML)方法,这对应用研究人员来说是违反直觉的,并且在存在许多协变量的情况下需要繁琐的模型选择程序。在本文中,我们通过将估计分为三个直观的步骤来简化复杂的 LMFA 估计,并方便探索协变量对状态成员资格的影响:(1)使用混合因子分析获得状态,同时将重复测量视为独立的,(2)将观察值分配到状态,以及(3)在考虑分类错误的情况下,在离散或连续时间的潜在马尔可夫模型中使用这些状态。一个真实数据示例证明了其实用价值。