Suppr超能文献

使用 Neutrosophic Kruskal Wallis H 检验分析 COVID-19 数据。

Analysis of COVID-19 data using neutrosophic Kruskal Wallis H test.

机构信息

College of Statistical and Actuarial Sciences, University of the Punjab Lahore, Lahore, Pakistan.

Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, 21551, Saudi Arabia.

出版信息

BMC Med Res Methodol. 2021 Oct 17;21(1):215. doi: 10.1186/s12874-021-01410-x.

Abstract

BACKGROUND

Kruskal-Wallis H test from the bank of classical statistics tests is a well-known nonparametric alternative to a one-way analysis of variance. The test is extensively used in decision-making problems where one has to compare the equality of several means when the observations are in exact form. The test is helpless when the data is in an interval form and has some indeterminacy.

METHODS

The interval-valued data often contain uncertainty and imprecision and often arise from situations that contain vagueness and ambiguity. In this research, a modified form of the Kruskal-Wallis H test has been proposed for indeterminacy data. A comprehensive theoretical methodology with an application and implementation of the test has been proposed in the research.

RESULTS

The proposed test is applied on a Covid-19 data set for application purposes. The study results suggested that the proposed modified Kruskal-Wallis H test is more suitable in interval-valued data situations. The application of this new neutrosophic Kruskal-Wallis test on the Covid-19 data set showed that the proposed test provides more relevant and adequate results. The data representing the daily ICU occupancy by the Covid-19 patients were recorded for both determinate and indeterminate parts. The existing nonparametric Kruskal-Wallis H test under Classical Statistics would have given misleading results. The proposed test showed that at a 1% level of significance, there is a statistically significant difference among the average daily ICU occupancy by corona-positive patients of different age groups.

CONCLUSIONS

The findings of the results suggested that our proposed modified form of the Kruskal-Wallis is appropriate in place of the classical form of the test in the presence of the neutrosophic environment.

摘要

背景

经典统计学检验库中的 Kruskal-Wallis H 检验是一种广为人知的、用于方差分析的非参数替代方法。该检验广泛应用于决策问题中,当观测值以精确形式出现时,需要比较几个平均值是否相等。当数据为区间形式且存在某些不确定性时,该检验就无能为力了。

方法

区间值数据通常包含不确定性和不精确性,并且经常出现在包含模糊性和歧义性的情况下。在这项研究中,针对不确定数据提出了一种修正形式的 Kruskal-Wallis H 检验。研究中提出了一种全面的理论方法,并对该检验进行了应用和实施。

结果

将所提出的检验应用于新冠疫情数据集以进行应用研究。研究结果表明,所提出的修正 Kruskal-Wallis H 检验更适用于区间值数据情况。在新冠疫情数据集上应用这种新的中立型 Kruskal-Wallis 检验表明,该检验提供了更相关和充分的结果。记录了新冠病毒患者每日 ICU 占用情况的确定性和不确定性部分的数据。在经典统计学下的现有非参数 Kruskal-Wallis H 检验会给出误导性的结果。该检验表明,在 1%的显著性水平上,不同年龄组的新冠病毒阳性患者的平均每日 ICU 占用率存在统计学上的显著差异。

结论

结果表明,在存在中立型环境的情况下,我们提出的 Kruskal-Wallis 修正形式适合替代经典形式的检验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1861/8520636/3a6c20640586/12874_2021_1410_Fig1_HTML.jpg

相似文献

1
Analysis of COVID-19 data using neutrosophic Kruskal Wallis H test.
BMC Med Res Methodol. 2021 Oct 17;21(1):215. doi: 10.1186/s12874-021-01410-x.
2
A new neutrosophic sign test: An application to COVID-19 data.
PLoS One. 2021 Aug 19;16(8):e0255671. doi: 10.1371/journal.pone.0255671. eCollection 2021.
3
Design of a new Z-test for the uncertainty of Covid-19 events under Neutrosophic statistics.
BMC Med Res Methodol. 2022 Apr 6;22(1):99. doi: 10.1186/s12874-022-01593-x.
4
Vague data analysis using neutrosophic Jarque-Bera test.
PLoS One. 2021 Dec 2;16(12):e0260689. doi: 10.1371/journal.pone.0260689. eCollection 2021.
5
Clinical laboratory medicine measurements correlation analysis under uncertainty.
Ann Clin Biochem. 2021 Jul;58(4):377-383. doi: 10.1177/00045632211006453. Epub 2021 Apr 8.
6
Modeling COVID-19 data with a novel neutrosophic Burr-III distribution.
Sci Rep. 2024 May 11;14(1):10810. doi: 10.1038/s41598-024-61659-2.
7
Compromise optimum allocation in neutrosophic multi-character survey under stratified random sampling using neutrosophic fuzzy programming.
Heliyon. 2024 Mar 21;10(7):e28327. doi: 10.1016/j.heliyon.2024.e28327. eCollection 2024 Apr 15.
9
New Diagnosis Test under the Neutrosophic Statistics: An Application to Diabetic Patients.
Biomed Res Int. 2020 Jan 22;2020:2086185. doi: 10.1155/2020/2086185. eCollection 2020.
10
A Bonferroni mean considering Shapley fuzzy measure under hesitant bipolar-valued neutrosophic set environment for an investment decision.
J Ambient Intell Humaniz Comput. 2023;14(6):6919-6946. doi: 10.1007/s12652-021-03550-w. Epub 2021 Oct 25.

引用本文的文献

4
Prediction of Prostate Cancer Risk Stratification Based on A Nonlinear Transformation Stacking Learning Strategy.
Int Neurourol J. 2024 Mar;28(1):33-43. doi: 10.5213/inj.2346332.166. Epub 2024 Mar 31.
6
Neurofilament light chain: A potential biomarker for cerebrovascular disease in children with sickle cell anaemia.
Br J Haematol. 2023 Nov;203(3):460-467. doi: 10.1111/bjh.19036. Epub 2023 Aug 15.
7
Why are some outbreaks worse than others? COVID-19 outbreak management strategies from a PHU perspective.
BMC Public Health. 2023 Mar 30;23(1):597. doi: 10.1186/s12889-023-15498-x.
8
Generalized Gamma-CUSUM control chart with application of COVID-19 deaths.
PLoS One. 2023 Feb 2;18(2):e0281360. doi: 10.1371/journal.pone.0281360. eCollection 2023.
10
Intelligent model for contemporary supply chain barriers in manufacturing sectors under the impact of the COVID-19 pandemic.
Expert Syst Appl. 2022 Nov 1;205:117711. doi: 10.1016/j.eswa.2022.117711. Epub 2022 Jun 3.

本文引用的文献

1
Introducing Kolmogorov-Smirnov Tests under Uncertainty: An Application to Radioactive Data.
ACS Omega. 2019 Dec 31;5(1):914-917. doi: 10.1021/acsomega.9b03940. eCollection 2020 Jan 14.
2
Points of significance: Nonparametric tests.
Nat Methods. 2014 May;11(5):467-8. doi: 10.1038/nmeth.2937.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验