Suppr超能文献

基于非线性变换堆叠学习策略的前列腺癌风险分层预测

Prediction of Prostate Cancer Risk Stratification Based on A Nonlinear Transformation Stacking Learning Strategy.

作者信息

Cao Xinyu, Fang Yin, Yang Chunguang, Liu Zhenghao, Xu Guoping, Jiang Yan, Wu Peiyan, Song Wenbo, Xing Hanshuo, Wu Xinglong

机构信息

School of Computer Science & Engineering, Wuhan Institute of Technology, Wuhan, China.

Department of Urology, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Int Neurourol J. 2024 Mar;28(1):33-43. doi: 10.5213/inj.2346332.166. Epub 2024 Mar 31.

Abstract

PURPOSE

Prostate cancer (PCa) is an epithelial malignancy that originates in the prostate gland and is generally categorized into low, intermediate, and high-risk groups. The primary diagnostic indicator for PCa is the measurement of serum prostate-specific antigen (PSA) values. However, reliance on PSA levels can result in false positives, leading to unnecessary biopsies and an increased risk of invasive injuries. Therefore, it is imperative to develop an efficient and accurate method for PCa risk stratification. Many recent studies on PCa risk stratification based on clinical data have employed a binary classification, distinguishing between low to intermediate and high risk. In this paper, we propose a novel machine learning (ML) approach utilizing a stacking learning strategy for predicting the tripartite risk stratification of PCa.

METHODS

Clinical records, featuring attributes selected using the lasso method, were utilized with 5 ML classifiers. The outputs of these classifiers underwent transformation by various nonlinear transformers and were then concatenated with the lasso-selected features, resulting in a set of new features. A stacking learning strategy, integrating different ML classifiers, was developed based on these new features.

RESULTS

Our proposed approach demonstrated superior performance, achieving an accuracy of 0.83 and an area under the receiver operating characteristic curve value of 0.88 in a dataset comprising 197 PCa patients with 42 clinical characteristics.

CONCLUSION

This study aimed to improve clinicians' ability to rapidly assess PCa risk stratification while reducing the burden on patients. This was achieved by using artificial intelligence-related technologies as an auxiliary method for diagnosing PCa.

摘要

目的

前列腺癌(PCa)是一种起源于前列腺的上皮性恶性肿瘤,通常分为低、中、高风险组。PCa的主要诊断指标是血清前列腺特异性抗原(PSA)值的测定。然而,依赖PSA水平可能导致假阳性,从而导致不必要的活检以及增加侵入性损伤的风险。因此,开发一种高效且准确的PCa风险分层方法势在必行。最近许多基于临床数据的PCa风险分层研究采用了二元分类,区分低至中度风险和高风险。在本文中,我们提出了一种新颖的机器学习(ML)方法,利用堆叠学习策略来预测PCa的三方风险分层。

方法

使用lasso方法选择属性的临床记录与5个ML分类器一起使用。这些分类器的输出经过各种非线性变换器的变换,然后与lasso选择的特征连接起来,产生一组新的特征。基于这些新特征开发了一种集成不同ML分类器的堆叠学习策略。

结果

在一个包含197名具有42种临床特征的PCa患者的数据集上,我们提出的方法表现出卓越的性能,准确率达到0.83,受试者操作特征曲线下面积值达到0.88。

结论

本研究旨在提高临床医生快速评估PCa风险分层的能力,同时减轻患者负担。这是通过使用人工智能相关技术作为诊断PCa的辅助方法来实现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71c/10990759/7125149d4665/inj-2346332-166f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验