Suppr超能文献

一种用于预测封闭空间中空气传播病原体释放风险的简化时空模型:欧拉-拉格朗日计算流体动力学方法。

A simplified tempo-spatial model to predict airborne pathogen release risk in enclosed spaces: An Eulerian-Lagrangian CFD approach.

作者信息

Mirzaei P A, Moshfeghi M, Motamedi H, Sheikhnejad Y, Bordbar H

机构信息

Architecture & Built Environment Department, University of Nottingham, University Park, Nottingham, UK.

Department of Mechanical Engineering, Sogang University, Seoul, South Korea.

出版信息

Build Environ. 2022 Jan;207:108428. doi: 10.1016/j.buildenv.2021.108428. Epub 2021 Oct 13.

Abstract

COVID19 pathogens are primarily transmitted via airborne respiratory droplets expelled from infected bio-sources. However, there is a lack of simplified accurate source models that can represent the airborne release to be utilized in the safe-social distancing measures and ventilation design of buildings. Although computational fluid dynamics (CFD) can provide accurate models of airborne disease transmissions, they are computationally expensive. Thus, this study proposes an innovative framework that benefits from a series of relatively accurate CFD simulations to first generate a dataset of respiratory events and then to develop a simplified source model. The dataset has been generated based on key clinical parameters (i.e., the velocity of droplet release) and environmental factors (i.e., room temperature and relative humidity) in the droplet release modes. An Eulerian CFD model is first validated against experimental data and then interlinked with a Lagrangian CFD model to simulate trajectory and evaporation of numerous droplets in various sizes (0.1 μm-700 μm). A risk assessment model previously developed by the authors is then applied to the simulation cases to identify the horizontal and vertical spread lengths (risk cloud) of viruses in each case within an exposure time. Eventually, an artificial neural network-based model is fitted to the spread lengths to develop the simplified predictive source model. The results identify three main regimes of risk clouds, which can be fairly predicted by the ANN model.

摘要

新冠病毒主要通过受感染生物源排出的空气传播飞沫进行传播。然而,目前缺乏能够代表空气传播释放情况的简化精确源模型,以供在建筑物的安全社交距离措施和通风设计中使用。虽然计算流体动力学(CFD)可以提供空气传播疾病传播的精确模型,但计算成本高昂。因此,本研究提出了一个创新框架,该框架利用一系列相对精确的CFD模拟,首先生成呼吸事件数据集,然后开发简化的源模型。该数据集是根据飞沫释放模式中的关键临床参数(即飞沫释放速度)和环境因素(即室温及相对湿度)生成的。首先将欧拉CFD模型与实验数据进行验证,然后与拉格朗日CFD模型相连接,以模拟各种尺寸(0.1μm - 700μm)的大量飞沫的轨迹和蒸发情况。然后将作者之前开发的风险评估模型应用于模拟案例,以确定每种情况下在暴露时间内病毒的水平和垂直传播长度(风险云)。最终,将基于人工神经网络的模型与传播长度进行拟合,以开发简化的预测源模型。结果确定了风险云的三种主要状态,人工神经网络模型可以对其进行合理预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8c9/8511599/b252195e6f3e/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验