Suppr超能文献

新冠病毒在封闭空间中的空气传播:研究方法概述。

Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods.

机构信息

School of Energy and Environment, Southeast University, Nanjing, China.

Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China.

出版信息

Indoor Air. 2022 Jun;32(6):e13056. doi: 10.1111/ina.13056.

Abstract

Since the outbreak of COVID-19 in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) has spread worldwide. This study summarized the transmission mechanisms of COVID-19 and their main influencing factors, such as airflow patterns, air temperature, relative humidity, and social distancing. The transmission characteristics in existing cases are providing more and more evidence that SARS CoV-2 can be transmitted through the air. This investigation reviewed probabilistic and deterministic research methods, such as the Wells-Riley equation, the dose-response model, the Monte-Carlo model, computational fluid dynamics (CFD) with the Eulerian method, CFD with the Lagrangian method, and the experimental approach, that have been used for studying the airborne transmission mechanism. The Wells-Riley equation and dose-response model are typically used for the assessment of the average infection risk. Only in combination with the Eulerian method or the Lagrangian method can these two methods obtain the spatial distribution of airborne particles' concentration and infection risk. In contrast with the Eulerian and Lagrangian methods, the Monte-Carlo model is suitable for studying the infection risk when the behavior of individuals is highly random. Although researchers tend to use numerical methods to study the airborne transmission mechanism of COVID-19, an experimental approach could often provide stronger evidence to prove the possibility of airborne transmission than a simple numerical model. All in all, the reviewed methods are helpful in the study of the airborne transmission mechanism of COVID-19 and epidemic prevention and control.

摘要

自 2019 年 12 月 COVID-19 爆发以来,严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)已在全球范围内传播。本研究总结了 COVID-19 的传播机制及其主要影响因素,如气流模式、空气温度、相对湿度和社交距离。现有病例的传播特征提供了越来越多的证据表明,SARS-CoV-2 可以通过空气传播。本调查回顾了概率和确定性研究方法,如威尔斯-赖利方程、剂量反应模型、蒙特卡罗模型、欧拉方法的计算流体动力学(CFD)、拉格朗日方法的 CFD 和实验方法,这些方法用于研究空气传播机制。威尔斯-赖利方程和剂量反应模型通常用于评估平均感染风险。只有与欧拉方法或拉格朗日方法相结合,这两种方法才能获得空气传播颗粒浓度和感染风险的空间分布。与欧拉方法和拉格朗日方法相比,蒙特卡罗模型更适合研究个体行为高度随机时的感染风险。尽管研究人员倾向于使用数值方法来研究 COVID-19 的空气传播机制,但实验方法通常可以提供比简单数值模型更强有力的证据来证明空气传播的可能性。总之,所回顾的方法有助于研究 COVID-19 的空气传播机制和疫情防控。

相似文献

2
A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces.
Sci Total Environ. 2022 Mar 15;812:152592. doi: 10.1016/j.scitotenv.2021.152592. Epub 2021 Dec 23.
3
An estimation of airborne SARS-CoV-2 infection transmission risk in New York City nail salons.
Toxicol Ind Health. 2020 Sep;36(9):634-643. doi: 10.1177/0748233720964650. Epub 2020 Oct 21.
4
SARS-CoV-2 airborne infection probability estimated by using indoor carbon dioxide.
Environ Sci Pollut Res Int. 2023 Jul;30(32):79227-79240. doi: 10.1007/s11356-023-27944-9. Epub 2023 Jun 7.
5
Natural ventilation strategy and related issues to prevent coronavirus disease 2019 (COVID-19) airborne transmission in a school building.
Sci Total Environ. 2021 Oct 1;789:147764. doi: 10.1016/j.scitotenv.2021.147764. Epub 2021 May 15.
6
A systematic review of possible airborne transmission of the COVID-19 virus (SARS-CoV-2) in the indoor air environment.
Environ Res. 2021 Feb;193:110612. doi: 10.1016/j.envres.2020.110612. Epub 2020 Dec 10.
7
Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks.
Environ Sci Technol. 2022 Jan 18;56(2):1125-1137. doi: 10.1021/acs.est.1c06531. Epub 2022 Jan 5.
8
A simplified tempo-spatial model to predict airborne pathogen release risk in enclosed spaces: An Eulerian-Lagrangian CFD approach.
Build Environ. 2022 Jan;207:108428. doi: 10.1016/j.buildenv.2021.108428. Epub 2021 Oct 13.
9
Community Outbreak Investigation of SARS-CoV-2 Transmission Among Bus Riders in Eastern China.
JAMA Intern Med. 2020 Dec 1;180(12):1665-1671. doi: 10.1001/jamainternmed.2020.5225.
10
Investigation of SARS-CoV-2 in hospital indoor air of COVID-19 patients' ward with impinger method.
Environ Sci Pollut Res Int. 2021 Sep;28(36):50480-50488. doi: 10.1007/s11356-021-14260-3. Epub 2021 May 6.

引用本文的文献

1
Influences of obstacle factors on the transmission trends of respiratory infectious diseases in indoor public places.
J Build Eng. 2023 Apr 1;64:105706. doi: 10.1016/j.jobe.2022.105706. Epub 2022 Dec 10.
2
Network-based virus dynamic simulation: Evaluating the fomite disinfection effectiveness on SARS-CoV-2 transmission in indoor environment.
Infect Dis Model. 2024 Oct 22;10(1):229-239. doi: 10.1016/j.idm.2024.10.004. eCollection 2025 Mar.
3
Advancements in Airborne Viral Nucleic Acid Detection with Wearable Devices.
Adv Sens Res. 2024 Mar;3(3). doi: 10.1002/adsr.202300061. Epub 2023 Jul 13.
4
VLP-based model for the study of airborne viral pathogens.
Microbiol Spectr. 2024 Jun 4;12(6):e0001324. doi: 10.1128/spectrum.00013-24. Epub 2024 May 16.
5
Impact of COVID-19 Pandemic on Routine Childhood Immunization Programs in Indonesia: Taking Rural and Urban Area into Account.
Patient Prefer Adherence. 2024 Mar 13;18:667-675. doi: 10.2147/PPA.S448901. eCollection 2024.
6
VLP-Based Model for Study of Airborne Viral Pathogens.
bioRxiv. 2024 Jan 3:2024.01.03.574055. doi: 10.1101/2024.01.03.574055.
7
Geoepidemiological perspective on COVID-19 pandemic review, an insight into the global impact.
Front Public Health. 2023 Oct 19;11:1242891. doi: 10.3389/fpubh.2023.1242891. eCollection 2023.
8
Estimating the prevalence of COVID-19 cases through the analysis of SARS-CoV-2 RNA copies derived from wastewater samples from North Dakota.
Glob Epidemiol. 2023 Oct 12;6:100124. doi: 10.1016/j.gloepi.2023.100124. eCollection 2023 Dec.
9
Mesenchymal Stem Cells in the Treatment of COVID-19.
Int J Mol Sci. 2023 Sep 30;24(19):14800. doi: 10.3390/ijms241914800.
10
Risk of Testing Positive for COVID-19 among Healthcare and Healthcare-Related Workers.
Vaccines (Basel). 2023 Jul 19;11(7):1260. doi: 10.3390/vaccines11071260.

本文引用的文献

1
Eulerian-Lagrangian modeling of cough droplets irradiated by ultraviolet-C light in relation to SARS-CoV-2 transmission.
Phys Fluids (1994). 2021 Mar 1;33(3):031905. doi: 10.1063/5.0039224. Epub 2021 Mar 9.
2
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough.
Phys Fluids (1994). 2020 Aug 1;32(8):083305. doi: 10.1063/5.0018432. Epub 2020 Aug 11.
3
Evaluation of airborne particle exposure for riding elevators.
Build Environ. 2022 Jan;207:108543. doi: 10.1016/j.buildenv.2021.108543. Epub 2021 Nov 8.
4
What is suitable social distancing for people wearing face masks during the COVID-19 pandemic?
Indoor Air. 2022 Jan;32(1):e12935. doi: 10.1111/ina.12935. Epub 2021 Oct 4.
5
6
Passenger exposure to respiratory aerosols in a train cabin: Effects of window, injection source, output flow location.
Sustain Cities Soc. 2021 Dec;75:103280. doi: 10.1016/j.scs.2021.103280. Epub 2021 Aug 19.
7
A critical review of heating, ventilation, and air conditioning (HVAC) systems within the context of a global SARS-CoV-2 epidemic.
Process Saf Environ Prot. 2021 Nov;155:230-261. doi: 10.1016/j.psep.2021.09.021. Epub 2021 Sep 20.
8
Implication of coughing dynamics on safe social distancing in an indoor environment-A numerical perspective.
Build Environ. 2021 Dec;206:108280. doi: 10.1016/j.buildenv.2021.108280. Epub 2021 Aug 30.
9
Investigating the effect of air conditioning on the distribution and transmission of COVID-19 virus particles.
J Clean Prod. 2021 Sep 20;316:128147. doi: 10.1016/j.jclepro.2021.128147. Epub 2021 Jun 29.
10
Effects of ventilation on the indoor spread of COVID-19.
J Fluid Mech. 2020 Sep 28;903:F1. doi: 10.1017/jfm.2020.720.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验