文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

建立一个与 IFNγ 反应相关的特征,用于预测皮肤黑色素瘤的生存情况。

Development of an IFNγ response-related signature for predicting the survival of cutaneous melanoma.

机构信息

Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.

Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.

出版信息

Cancer Med. 2020 Nov;9(21):8186-8201. doi: 10.1002/cam4.3438. Epub 2020 Sep 9.


DOI:10.1002/cam4.3438
PMID:32902917
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7643661/
Abstract

BACKGROUND: The tumor microenvironment (TME) plays a critical role in tumorigenesis, development, and therapeutic efficacy. Major advances have been achieved in the treatment of various cancers through immunotherapy. Nevertheless, only a minority of patients have positive responses to immunotherapy, which is partly due to conditions of the immunosuppressive microenvironment. Therefore, it is essential to identify prognostic biomarkers that reflect heterogeneous landscapes of the TME. METHODS AND MATERIALS: Based upon the ESTIMATE algorithm, we evaluated the infiltrating levels of immune and stromal components derived from patients afflicted by various types of cancer from The Cancer Genome Atlas database (TCGA). According to respective patient immune and stromal scores, we categorized cases into high- and low-scoring subgroups for each cancer type to explore associations between TME and patient prognosis. Gene Set Enrichment Analyses (GSEA) were conducted and genes enriched in IFNγ response signaling pathway were selected to facilitate establishment of a risk model for predicting overall survival (OS). Furthermore, we investigated the associations between the prognostic signature and tumor immune infiltration landscape by using CIBERSORT algorithm and TIMER database. RESULTS: Among the cancers assessed, the immune scores for skin cutaneous melanoma (SKCM) were the most significantly correlated with patients' survival time (P < .0001). We identified and validated a five-IFNγ response-related gene signature (UBE2L6, PARP14, IFIH1, IRF2, and GBP4), which was closely correlated with the prognosis for SKCM afflicted patients. Multivariate Cox regression analysis indicated that this risk model was an independent prognostic factor for SKCM. Tumor-infiltrating lymphocytes and specific immune checkpoint molecules had notably differential levels of expression in high- compared to low-risk samples. CONCLUSION: In this study, we established a novel five-IFNγ response-related gene signature that provided a better and increasingly comprehensive understanding of tumor immune landscape, and which demonstrated good performance in predicting outcomes for patients afflicted by SKCM.

摘要

背景:肿瘤微环境(TME)在肿瘤发生、发展和治疗效果中起着关键作用。免疫疗法在治疗各种癌症方面取得了重大进展。然而,只有少数患者对免疫疗法有积极反应,部分原因是免疫抑制微环境的状况。因此,识别反映 TME 异质性景观的预后生物标志物至关重要。

方法和材料:基于 ESTIMATE 算法,我们评估了来自癌症基因组图谱数据库(TCGA)中各种类型癌症患者的免疫和基质成分的浸润水平。根据各自的患者免疫和基质评分,我们将病例分为高评分和低评分亚组,以探索 TME 与患者预后之间的关系。进行了基因集富集分析(GSEA),并选择富集 IFNγ 反应信号通路的基因,以建立预测总生存期(OS)的风险模型。此外,我们使用 CIBERSORT 算法和 TIMER 数据库研究了预后特征与肿瘤免疫浸润景观之间的关系。

结果:在所评估的癌症中,皮肤黑色素瘤(SKCM)的免疫评分与患者的生存时间最显著相关(P<0.0001)。我们鉴定并验证了一个与 SKCM 患者预后密切相关的五个 IFNγ 反应相关基因特征(UBE2L6、PARP14、IFIH1、IRF2 和 GBP4)。多变量 Cox 回归分析表明,该风险模型是 SKCM 的独立预后因素。肿瘤浸润淋巴细胞和特定免疫检查点分子在高风险样本中表达水平明显不同于低风险样本。

结论:在这项研究中,我们建立了一个新的五个 IFNγ 反应相关基因特征,它提供了对肿瘤免疫景观的更好和日益全面的理解,并在预测 SKCM 患者结局方面表现出良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/4352faa43e5d/CAM4-9-8186-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/24ef27163d11/CAM4-9-8186-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/fd8baeb99705/CAM4-9-8186-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/3d30e3d63345/CAM4-9-8186-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/0e4c2c91d0de/CAM4-9-8186-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/89d99e6f6cfc/CAM4-9-8186-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/4a4ae9b67c34/CAM4-9-8186-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/06dc3173710b/CAM4-9-8186-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/bc9f601aaf1b/CAM4-9-8186-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/4352faa43e5d/CAM4-9-8186-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/24ef27163d11/CAM4-9-8186-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/fd8baeb99705/CAM4-9-8186-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/3d30e3d63345/CAM4-9-8186-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/0e4c2c91d0de/CAM4-9-8186-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/89d99e6f6cfc/CAM4-9-8186-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/4a4ae9b67c34/CAM4-9-8186-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/06dc3173710b/CAM4-9-8186-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/bc9f601aaf1b/CAM4-9-8186-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30be/7643661/4352faa43e5d/CAM4-9-8186-g009.jpg

相似文献

[1]
Development of an IFNγ response-related signature for predicting the survival of cutaneous melanoma.

Cancer Med. 2020-11

[2]
Development and validation of an immune gene set-based prognostic signature in cutaneous melanoma.

Future Oncol. 2021-11

[3]
Characterization of Exosome-Related Gene Risk Model to Evaluate the Tumor Immune Microenvironment and Predict Prognosis in Triple-Negative Breast Cancer.

Front Immunol. 2021

[4]
Data mining of immune-related prognostic genes in metastatic melanoma microenvironment.

Biosci Rep. 2020-11-27

[5]
Analysis of immune subtypes based on immunogenomic profiling identifies prognostic signature for cutaneous melanoma.

Int Immunopharmacol. 2020-12

[6]
Identification of a pyroptosis-associated long non-coding RNA signature for predicting the immune status and prognosis in skin cutaneous melanoma.

Eur Rev Med Pharmacol Sci. 2021-9

[7]
Analysis on tumor immune microenvironment and construction of a prognosis model for immune-related skin cutaneous melanoma.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023-5-28

[8]
Predicting the clinical outcome of melanoma using an immune-related gene pairs signature.

PLoS One. 2020-10-8

[9]
Prognostic and immune infiltration implications of SIGLEC9 in SKCM.

Diagn Pathol. 2024-8-17

[10]
Based on scRNA-seq and bulk RNA-seq to establish tumor immune microenvironment-associated signature of skin melanoma and predict immunotherapy response.

Arch Dermatol Res. 2024-5-25

引用本文的文献

[1]
IGF2BP2 orchestrates global expression and alternative splicing profiles associated with glioblastoma development in U251 cells.

Transl Oncol. 2025-1

[2]
Identification of a metabolism-linked genomic signature for prognosis and immunotherapeutic efficiency in metastatic skin cutaneous melanoma.

Medicine (Baltimore). 2024-6-7

[3]
Analysis of the Expression of in Patients with Hepatocellular Carcinoma and its Effect on the Phenotype of Hepatocellular Carcinoma Cells.

Curr Genomics. 2024-2-23

[4]
An IFN-γ-related signature predicts prognosis and immunotherapy response in bladder cancer: Results from real-world cohorts.

Front Genet. 2023-1-4

[5]
Discovery and Validation of a SIT1-Related Prognostic Signature Associated with Immune Infiltration in Cutaneous Melanoma.

J Pers Med. 2022-12-21

[6]
Identification of Melanoma Subsets Based on DNA Methylation Sites and Construction of a Prognosis Evaluation Model.

J Oncol. 2022-10-11

[7]
Intra-Abdominal Malignant Melanoma: Challenging Aspects of Epidemiology, Clinical and Paraclinical Diagnosis and Optimal Treatment-A Literature Review.

Diagnostics (Basel). 2022-8-24

[8]
Core immune cell infiltration signatures identify molecular subtypes and promote precise checkpoint immunotherapy in cutaneous melanoma.

Front Immunol. 2022

[9]
Melanoma Molecular Subtypes and Development of Prognostic and Immunotherapy-Related Genetic Characteristics by Ferroptosis Gene Analysis.

Comput Math Methods Med. 2022

[10]
Development and Validation of a Novel Survival Model for Cutaneous Melanoma Based on Necroptosis-Related Genes.

Front Oncol. 2022-3-21

本文引用的文献

[1]
CD147 Is a Promising Target of Tumor Progression and a Prognostic Biomarker.

Cancers (Basel). 2019-11-16

[2]
Fibroblasts Fuel Immune Escape in the Tumor Microenvironment.

Trends Cancer. 2019-11

[3]
Metabolic Stress Triggers Immune Escape by Tumors.

Trends Cancer. 2019-11

[4]
Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives.

J Hematol Oncol. 2019-10-29

[5]
Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade.

Cell Res. 2019-9-3

[6]
Frequent Loss of IRF2 in Cancers Leads to Immune Evasion through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression.

J Immunol. 2019-8-30

[7]
Immune-checkpoint inhibitors for the treatment of metastatic melanoma: a model of cancer immunotherapy.

Semin Cancer Biol. 2019-8-17

[8]
Management of metastatic cutaneous melanoma: updates in clinical practice.

Ther Adv Med Oncol. 2019-5-22

[9]
PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-κB pathway.

Mol Carcinog. 2019-4-10

[10]
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.

Nat Commun. 2019-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索