Suppr超能文献

基于机器学习的CT影像组学分析在接受第三代EGFR-TKI奥希替尼治疗的伴有T790M突变的转移性非小细胞肺癌患者预后预测中的应用

Machine Learning-Based CT Radiomics Analysis for Prognostic Prediction in Metastatic Non-Small Cell Lung Cancer Patients With -T790M Mutation Receiving Third-Generation EGFR-TKI Osimertinib Treatment.

作者信息

Tang Xin, Li Yuan, Yan Wei-Feng, Qian Wen-Lei, Pang Tong, Gong You-Ling, Yang Zhi-Gang

机构信息

Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.

Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Front Oncol. 2021 Sep 29;11:719919. doi: 10.3389/fonc.2021.719919. eCollection 2021.

Abstract

BACKGROUND AND PURPOSE

As a third-generation tyrosine kinase inhibitor (TKI), osimertinib is approved for treating advanced non-small cell lung cancer (NSCLC) patients with -T790M mutation after progression on first- or second-generation EGFR-TKIs such as gefitinib, erlotinib and afatinib. We aim at exploring the feasibility and effectiveness of using radiomic features from chest CT scan to predict the prognosis of metastatic non-small cell lung cancer (NSCLC) patients with -T790M mutation receiving second-line osimertinib therapy.

METHODS

Contrast-enhanced and unenhanced chest CT images before osimertinib treatment were collected from 201 and 273 metastatic NSCLC patients with -T790M mutation, respectively. Radiomic features were extracted from the volume of interest. LASSO regression was used to preliminarily evaluate the prognostic values of different radiomic features. We then performed machine learning-based analyses including random forest (RF), support vector machine (SVM), stepwise regression (SR) and LASSO regression with 5-fold cross-validation (CV) to establish the optimal radiomic model for predicting the progression-free survival (PFS) of osimertinib treatment. Finally, a combined clinical-radiomic model was developed and validated using the concordance index (C-index), decision-curve analysis (DCA) and calibration curve analysis.

RESULTS

Disease progression occurred in 174/273 (63.7%) cases. CT morphological features had no ability in predicting patients' prognosis in osimertinib treatment. Univariate COX regression followed by LASSO regression analyses identified 23 and 6 radiomic features from the contrast-enhanced and unenhanced CT with prognostic value, respectively. The 23 contrast-enhanced radiomic features were further used to construct radiomic models using different machine learning strategies. Radiomic model built by SR exhibited superior predictive accuracy than RF, SVR or LASSO model (mean C-index of the 5-fold CV: 0.660 0.560 . 0.598 . 0.590). Adding the SR radiomic model to the clinical model could remarkably strengthen the C-index of the latter from 0.672 to 0.755. DCA and calibration curve analyses also demonstrated good performance of the combined clinical-radiomic model.

CONCLUSIONS

Radiomic features extracted from the contrast-enhanced chest CT could be used to evaluate metastatic NSCLC patients' prognosis in osimertinib treatment. Prognostic models combing both radiomic features and clinical factors had a great performance in predicting patients' outcomes.

摘要

背景与目的

奥希替尼作为第三代酪氨酸激酶抑制剂(TKI),被批准用于治疗在第一代或第二代表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKIs)(如吉非替尼、厄洛替尼和阿法替尼)治疗进展后出现T790M突变的晚期非小细胞肺癌(NSCLC)患者。我们旨在探讨利用胸部CT扫描的影像组学特征预测接受二线奥希替尼治疗的伴有T790M突变的转移性非小细胞肺癌(NSCLC)患者预后的可行性和有效性。

方法

分别从201例和273例伴有T790M突变的转移性NSCLC患者中收集奥希替尼治疗前的增强和未增强胸部CT图像。从感兴趣区域提取影像组学特征。采用套索回归初步评估不同影像组学特征的预后价值。然后我们进行基于机器学习的分析,包括随机森林(RF)、支持向量机(SVM)、逐步回归(SR)和5折交叉验证(CV)的套索回归,以建立预测奥希替尼治疗无进展生存期(PFS)的最佳影像组学模型。最后,使用一致性指数(C-index)、决策曲线分析(DCA)和校准曲线分析开发并验证联合临床-影像组学模型。

结果

174/273例(63.7%)出现疾病进展。CT形态学特征无法预测奥希替尼治疗患者的预后。单因素COX回归及随后的套索回归分析分别从增强和未增强CT中鉴定出23个和6个具有预后价值的影像组学特征。这23个增强影像组学特征进一步用于使用不同机器学习策略构建影像组学模型。由SR构建的影像组学模型表现出比RF、SVR或套索模型更高的预测准确性(5折CV的平均C-index:0.660>0.560、0.598、0.590)。将SR影像组学模型添加到临床模型中可显著将后者的C-index从0.672提高到0.755。DCA和校准曲线分析也证明联合临床-影像组学模型具有良好性能。

结论

从增强胸部CT中提取的影像组学特征可用于评估奥希替尼治疗转移性NSCLC患者的预后。结合影像组学特征和临床因素的预后模型在预测患者结局方面表现出色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e40d/8511497/01cd02db24b1/fonc-11-719919-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验